

Natural Background Soil Metals Concentrations in Washington State

Toxics Cleanup Program Department of Ecology

Natural Background Soil Metals Concentrations

in

Washington State

by Charles San Juan Toxics Cleanup Program Olympia, Washington 98504-7600

> Publication No. 94-115 October 1994

200

· 🕌

TABLE OF CONTENTS

WLEDGMENTS	viii
	1
IVE SUMMARY	1
OVEDVIEW	1-1
	1-1
	1-1
	1-1
	1-1
what are the Requirements for Background	1 2
in the Model Toxics Control Act/	1-2
How are Background Values Used?	1-2
	1-2
	1-3
Washington	1-3
Michigan	1-3
New Jersey	1-4
Ontario, Canada	1-4
SOIL	
What is Soil and How is it Formed?	2-1
	2-1
	2-1
	2-1
	2-2
Summary	2-2
가는 사람들은 사람들은 경기 사람들이 되어 살고 생생한 것이 되었다. 생각이 되는 것이 말라면 하게 되어 생각하였다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
THINK DECICAL	
Objective	2 1
Objective	3-1
Approach	3-1
SAMPLING	
Soos Creek Basin, King County	4-1
Statewide Natural Background Assessment	4-1
Vertical Profile Samples	4-6
Equipment Decontamination	4-6
그리 후 하는 그는 그는 이렇게 된다. 그는 그는 그는 그를 받는데 그리 사용한 동안 나는 얼마나?	
ANALYSIS	
Laboratory Analytical Procedures.	5-1
	5-1
	INTE SUMMARY DVERVIEW. Introduction. What Does "Natural Background" Mean? Why is this Study Important? What are the Requirements for Background in the Model Toxics Control Act? How are Background Values Used? Background Soils Metals - Other Studies. United States Geological Survey. Washington. Michigan. New Jersey. Ontario, Canada. SOIL What is Soil and How is it Formed? Factors Affecting Soils Formation. Washington Soils. Effect of Soil and Geologic Diversity on Background. Summary. STUDY DESIGN Objective. Approach. SAMPLING Soos Creek Basin, King County. Statewide Natural Background Assessment. Vertical Profile Samples. Equipment Decontamination.

Table of Contents - cont'd.

VI.	STUDY RESULTS	
	Data Analysis	6-1
	Calculation of Background Values	6-1
	What is the 90th Percentile Value?	6-1
	Why is this Important?	6-1
	90th Percentile Comparison	6-1
	Background Values: Washington and Other States	6-3
	background values. Washington and Other States	
VII.	ANALYSIS OF REGIONAL VARIATION	7-1
V	Overview.	7-1
	Data Sets.	7-1
	Aluminum.	7-2
		7-2
	Arsenic	
	Beryllium	7-2
	Cadmium	7-2
	Chromium	7-3
	Copper	7-3
	Iron	7-3
	Lead.	7-3
	Manganese.	7-3
	Nickel	7-3
	Zinc	7-4
	Other Elements	7-4
	Antimony	7-4
	Selenium	7-4
	Silver	7-4
	Thallium	7-4
	Why are the West Side Background Values Higher?	7-4
	Geologic Diversity.	7-5
	Goologie Divoisity	, ,
VIII.	USE AND APPLICATION OF BACKGROUND VALUES	
	Site-Specific or Area Studies of Natural Background	8-1
•	Use of the Statewide and Regional Values	8-1
	Other Areas.	8-1
	Application of Background Values	8-1
	Alternative Procedures	8-2
IX.	SCATTER PLOTS, DISTRIBUTION GRAPHS, AND CONCENTRATION MA	DC
IA.	SCATTER FLOTS, DISTRIBUTION GRAPHS, AND CONCENTRATION MA	P3 Q_1

Table of Contents - cont'd.

Χ.	DATA TABLES	
	Data Retrieval	10-1
	Interpreting the Data Tables	10-1
	Latitude & Longitude	10-1
	Site Codes	10-1
	Number Column	10-2
XI.	MTCAStat CALCULATIONS & SUMMARY STATISTICS	11-1
	Calculation of Background Values	11-1
	그리는 그런 하는 그리고 있는 이번 그리고 하는데, 그 사람들이 하는 것이 나를 다 했다.	
XII.	DATA QUALITY INFORMATION	12-1
	Data Quality Assurance and Quality Control (QA/QC)	12-1
	Sample Splits, Duplicates, and Reference Samples	12-1
	Laboratory Precision and Accuracy	12-2
	Data Quality Results	12-2
	Analytical Effects - Arsenic	12-2
	Quality Assurance Memos	12-2
XIII.	REFERENCES	13-1

LIST OF FIGURES

Figure 1: Soils Regions of Washington State	3-2
Figure 2: Soil sampling locations in Washington State	4-2
Figure 3: Basic soil sampling scheme, statewide investigation	4-4
Figure 4: Soil sampling preparation, background soil metals project	4-5
Figure 5: Statewide 90th percentile values	6-2
Figure 6: Sample Populations	6-4
Figure 7: Al, Fe Comparison of West-East 90th Percentile Values	6-5
Figure 8: Be, Cd, Hg Comparison of West-East 90th Percentile Values	6-5
Figure 9: As, Cr, Cu, Ni, Pb Comparison of West-Eat 90th Percentile Values	6-5
Figure 10: Background Value Comparison	6-6
Figure 11: Aluminum Regional Analysis	7-6
Figure 12: Arsenic Regional Analysis	7-7
Figure 13: Beryllium Regional Analysis.	7-8
Figure 14: Cadmium Regional Analysis	7-9
Figure 15: Chromium Regional Analysis.	7-10
Figure 16: Copper Regional Analysis	7-11
Figure 17: Iron Regional Analysis	7-12
Figure 18: Lead Regional Analysis.	7-13
Figure 19: Manganese Regional Analysis.	7-14
Figure 20: Mercury Regional Analysis	7-15
Figure 21: Nickel Regional Analysis	7-16
Figure 22: Zinc Regional Analysis	7-17
Figure 23: Aluminum X,Y SCATTER PLOT	9-2
Figure 24: Statewide Aluminum Concentration Map	
Figure 25: Arsenic X,Y SCATTER PLOT.	9-4
Figure 26: Statewide Arsenic Concentration Map	
Figure 27: Beryllium X,Y SCATTER PLOT	9-6
Figure 28: Statewide Beryllium Concentration Map	
Figure 29: Cadmium X,Y SCATTER PLOT	9-8
Figure 30: Statewide Cadmium Concentration Map	
Figure 31: Chromium X,Y SCATTER PLOT	9-10
Figure 32: Statewide Chromium Concentration Map	
Figure 33: Copper X,Y SCATTER PLOT.	9-12
Figure 33: Statewide Copper Concentration Map	
Figure 35: Iron X,Y SCATTER PLOT	9-14
Figure 36: Statewide Iron Concentration Map	
Figure 37: Lead X,Y SCATTER PLOT.	9-16
Figure 38: Statewide Lead Concentration Map.	
Figure 39: Manganese X,Y SCATTER PLOT	9-18
Figure 40: Statewide Manganese Concentration Map	
Figure 41: Mercury X,Y SCATTER PLOT.	9-20
Figure 42: Statewide Mercury Concentration Map	

List of Figures - cont'd.

9-22
9-24
9-26
12-3
12-7
12-8
12-9
12-10

	이 왕이 되는 그렇게 되었다면 내가 되는 것이다.
	회 선물이라면 하는 사람은 그들만 맞게 된게 끊으면 됐다.
그 사람들은 사람들이 가장하는 것이 되었다. 그 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.	

LIST OF TABLES

Table 1: Statewide and Regional 90th Percentile Values	1
Table 2: Anticipated Users of the Background Soils Information	1-2
Table 3: Soil and Regional Geologic Descriptions	3-3
Table 4: Background Soil Metals Sampling Summary	4-3
Table 5: Laboratory Analytical Methods Summary	5-2
Table 6: Statewide 90th Percentile Values	6-2
Table 7: Comparison of 90th Percentile Values	6-4
Table 8: Comparison of West/East 90th Percentile Values	6-5
Table 9: Comparison of Washington Background Values to Other States	6-6
Table 10: Data Subdivisions	7-1
Table 11: Aluminum 90th Percentile and Lognormal Mean Values,	
West and East Data	7-2
Table 12: Counties Encompassed by Background Values	8-1
Table 13: 90th Percentile Values	8-3
Table 14: Site Code Definitions	10-1
Table 15: Site Code Suffix Definitions	10-2
Table 16: Background Soil Metals Study Chronology	10-2
Table 17: Background Values Summary Statistics	11-2
Table 18: Sample Splits, Duplicates, and Reference Samples	12-1
Table 19: Relative Percent Difference Summary Statistics	12-3
Table 20: Relative Percent Differences, Sample Splits, Duplicates,	
and Reference Samples	12-4

Acknowledgments

This study represents the culmination of several years of dedicated work performed by individuals in both the Department of Ecology and the United States Geological Survey (USGS) Water Resources Division. This project was originally initiated by Peter Kmet, P.E., Toxics Cleanup Program. His insight, leadership, and technical contributions throughout this study were invaluable and we are in debt to his services. Ken Ames of the USGS supervised nearly all of the field work and sample collection for this project. Ken's effort and dedication throughout this project has truly been extraordinary. All of the statistical calculations in this report were made using Ecology's MTCAStat program, which was originally developed by Nigel Blakley and Greg Glass (both of these individuals were also instrumental in the conceptual development of this report). Ecology is also in debt to all other individuals in the USGS who worked on this project, including Ed Prych, who supervised the Soos Creek Basin study. Recognition is also in order for Bill Kamin and the Manchester Laboratory staff. Their work in the analysis of several hundred soil samples is greatly appreciated. Staff in Ecology's Environmental Investigations and Laboratory Services Program (EILS) also contributed to this study as well as staff in Ecology publications.

Executive Summary

This report contains information on the natural background concentrations of metals in surficial soil throughout Washington State. The objective of this study was to define a range of values that represent the natural concentration of metals in surficial soils throughout Washington. The results of this study represent the culmination of a seven-year effort by Ecology (Toxics Cleanup Program) and its co-sponsor, the USGS Water Resources Division (Tacoma Office).

Upon the completion of a small pilot project (Big Soos Creek Drainage Basin, King County, 1987), Washington was divided into 24 distinct regions based on differences in geology, soils, and climate (see Figure 1). Twelve of these 24 regions were then selected for a statewide assessment of Washington. These 12 regions were selected because they represent the major urban, industrial, and highly developed core areas in Washington, which is where most cleanup sites are located. Soil samples were then collected from the predominant soil series in each of the 12 regions, with a total of 490 soil samples collected from 166 locations throughout Washington. An effort was made to collect samples from undisturbed or undeveloped areas. Samples were collected from the "A," "B," and "C" soil horizons at each sampling location (ground surface to a depth of 3 ft.). Each sample was analyzed for total metals content.

The results of this study found that the soil metals concentrations in Western Washington were on average slightly higher than Eastern Washington. The population, climate, and vegetation of Western Washington are thought to be the primary reasons for this variation. The variation in west-to-east data are more pronounced when the 90th percentile values are compared (see Table 1 below). The one exception was arsenic, whose east-side 90th percentile value was 13% higher than the west. Statewide and regional 90th percentile values are presented in Table 1 below.

Table 1: Statewide & Regional 90th Percentile Values¹

	Al	As ²	Be	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn
State Wide	37,200	7	2	1	42	36	42,100	17	1,100	0.07	38	86
Puget Sound	32,600	7	0.6	1	48	36	58,700	24	1,200	0.07	48	85
Clark County	52,300	6	2	1	27	34	36,100	17	1,500	0.04	21	96
Yakima Basin	33,400	5	2	1	38	27	51,500	11	1,100	0.05	46	79
Spokane Basin	21,400	9	0.8	1	18	22	25,000	15	700	0.02	16	66

¹ All Values = mg/kg and represent total-recoverable analysis.

² Graphite furnace atomic absorption (GFAA) analysis.

en de la composition de la completa La completa de la completa del completa de la completa del completa de la completa del completa del completa de la completa del completa de la completa del completa de la completa de la completa de la completa del completa de la completa del completa del

마이마이 보고 있다. 이 아이는 아이는 아이는 아이는 아이는 아이는 아이를 보고 있는 것이다. 그는 사람들은 사용을 보고 있다. 사용을 하는 것이 되었습니다. 그는 것이 되었습니다. 그들은 사용을 보고 있는 것이다. 이 아이들은 것이 나를 보고 있다. 그는 것이다. 사용을 하는 것이 말을 하는 것이다. 그는 것이 되었습니다. 이 아이는 사용을 하는 것이다. 그는 것이 나를 보고 있는 것이다.

n de filosofie de la partir de la filosofie de la companie de la companie de la companie de la companie de la La companie de la co La companie de la co

으로 하는 사람들은 경기에 가장하고 있는 것을 하는데 되었다. 그는 중에 하는 것이 되었다. 그는 것이 되었다. 그는 것이 되었다. 그는 것이 되었다. 그는 사용이 발표하는 것이 되었다. 그는 사용이를 보는 것이 함께 있는 것을 것이 되었다. 그는 것이 되었다. 그런 것이 되었다. 그는 것이 되었다. 그는 것이 되었다. 그런 것이 되었다. 그는 것이 되었다. 그는 것이 되었다. 그

e program de la completa de la comp La completa de la com

I. OVERVIEW

Introduction

This report contains the results of a study of natural background soil metals concentrations in Washington State. In this study, 490 soil samples were collected from 166 sites throughout Washington. This study was conducted by the United States Geological Survey (USGS) in cooperation with the Department of Ecology, Toxics Cleanup Program.

What Does "Natural Background" Mean?

"Natural background" is defined in the Model Toxics Control Act (MTCA) (Ch 173-340-200 WAC) as the "...concentration of hazardous substance consistently present in the environment which has not been influenced by localized human activities. For example, several metals occur naturally in the bedrock and soil of Washington State due solely to the geologic processes that formed these materials and the concentration of these metals would be considered natural background. Also, low concentrations of some particularly persistent organic compounds such as polychlorinated biphenyls (PCBs) can be found in surficial soils and sediment throughout much of the state due to global use of these hazardous substances. These low concentrations would be considered natural background. Similarly, concentrations of various radionuclides which are present at low concentrations throughout the state due to global distribution of fallout from bomb testing and nuclear accidents would be considered natural background."

Why is this Study Important?

The advent of hazardous and toxic waste regulation in the United States has prompted a need for both the regulatory and industrial community to better understand the natural concentrations of certain elements in the environment. Consequently, many states, including Washington, have now begun to assess the natural concentration of metals in soils throughout their prospective regions. This study is important in that it represents a true benchmark of the natural background soil metals concentrations in Washington State. These data can be compared against data from known or suspected sites of environmental contamination. More informed decisions on site investigations, cleanup actions, and remedy selections can now be made as a result of the information from this study.

What are the Requirements for Background in the Model Toxics Control Act?

The requirements for determining natural background are given in Ch 173-340-708 (11) WAC of Washington's MTCA. Two types of background values may be determined---"area" and "natural." The derivation of natural background requires the collection of at least ten (10) samples, while the derivation of area background requires at least twenty (20) samples. Samples must be collected from areas that have the same basic characteristics as the medium of concern at the site. Samples must also be collected in areas that "...have not been influenced by releases from the site, and, in the case of natural background concentrations, have not been influenced by releases from other localized

human activities." Statistical methods and detailed guidance on how to derive background values are presented in the publication entitled *Statistical Guidance for Ecology Site Managers* (August, 1992). A computer software program known as "MTCAStat" (July 1993) can also be used to derive background values. Copies of the *Statistical Guidance for Site Managers* and MTCAStat can be obtained through the Ecology publications office (phone 206 407-7472).

How are Background Values Used?

Background values are often compared against a separate data set for regulatory or investigative purposes. Separate data sets can include data from site investigations, waste streams (sewage sludge, incinerator ash, fill material), and other background studies. Once the data sets are compared, a decision is then made about whether the foreground data set exceeds the true range of values from the background data set. This decision is typically made using statistics or other mathematical procedures. A summary of potential users for the information from this study is given in **Table 2** below.

Table 2: Anticipated Uses of the Background Soils Information

Task	Anticipated Users
Defining Background	Owner/operator of any site that does not want to complete a site-specific background study per MTCA requirements (using this data may be more cost-effective for smaller sites)
Risk Assessments	Toxicologists and other Scientists
Screening Data for Contamination	Ecology staff & Consultants
Analyzing Waste Streams	Generators of hazardous and solid waste, incinerator ash, fill material, and sewage sludge
Designing Investigative Studies	Consultants
Regulatory Compliance	Federal Programs including RCRA and Superfund, state biosolids and sewage sludge programs, health departments
Research	Universities and other organizations
General Information	Public, Attorneys, etc.

Background Soil Metals - Other Studies

The intent of this section is to provide some brief information on what other states and organizations have done regarding background investigations. It is hoped that this information can be used primarily for comparative purposes.

United States Geological Survey (USGS)

Schacklette and Boerngen (1984) of the USGS initiated one of the first studies of elements in soil throughout the United States. In their paper, Schacklette and Boerngen state that at the beginning of the study (1961), "...few data were available on the abundance of elements in surficial materials of the United States as a whole." They also went on to state that "...most of the early reports discussed only the elements that were of economic importance to mining or agriculture in a metallogenic area or State..." Thus, Shacklette designed a study to "...give estimates of the range of elemental abundance in surficial materials that were unaltered or very little unaltered from their natural condition." This led to the collection of soil samples from 1,318 sampling locations across the United States at depths of approximately 20 cm.

Washington

Increased awareness of environmental affairs and concern over industrial pollution in the United States has led to more need to understand the natural concentrations of certain elements in the environment. This trend has taken hold in Washington State, as noted by the 1989 PTI Environmental Services study entitled *Background Concentrations of Selected Chemicals in Water, Soil, Sediments, and Air of Washington State*. This study (performed by PTI for the Department of Ecology), was designed to identify "...the concentrations of high-priority contaminants that are representative of background (or ambient) conditions in the water, soil, and air of Washington state." The information from this study was ultimately used in the development of cleanup standards for the Model Toxics Control Act (MTCA).

The advent of hazardous waste regulation and cleanup of sites contaminated with toxic wastes in the United Sates has also prompted the need to understand the natural concentration of elements in the environment on a <u>site-specific basis</u>. A good example of this is the April 1993 study conducted by the United States Department of Energy for the Hanford Nuclear Reservation. This study involved the collection of over 180 soil samples at 14 locations throughout the Hanford site. Information from this study will ultimately be used in the environmental remediation and restoration effort at the Hanford site.

Similar site-specific investigations into background metals concentrations have been conducted at the Asarco Smelter Superfund site in Tacoma and the former Dupont Works site in Dupont. For the Asarco study, 25 samples were collected from McChord Air Force Base to determine the background concentrations of inorganics in soil (ICF & Ecology, April 1993). The natural or "ambient" concentration of arsenic in soil in and around the Asarco Smelter has been a high-priority item for several years now. A number of samples have also been collected to assess the natural concentration of mercury and other inorganic constituents at the Dupont site.

Michigan

The Michigan Department of Natural Resources (MDNR) completed a study of natural background soil metals concentrations in September 1988. An update to this study was completed in April 1991.

The background data from Michigan's study was originally intended for comparison against data from hazardous waste site closures (RCRA); however, the data set has been widely distributed and is currently being used at Michigan toxic waste cleanup sites as well. In Michigan, natural background values are generated by calculating the mean plus three standard deviations. For more information on the Michigan study, contact Dave Slayton, Senior Geologist, Geotechnical Unit, MDNR Waste Management Division at (517) 373-8012.

New Jersey

The New Jersey Department of Environmental Protection has published information available on the concentrations of metals and organics in soil at background locations throughout the state (ref; "A Summary of Selected Soil Constituents and Contaminants at Background Locations in New Jersey", New Jersey DEP, September, 1993). In this study, 80 soil samples were collected from 46 of the most common soil types found in New Jersey. Background concentrations are given according to five land use categories: urban, suburban, rural, golf course, and farm. Statistical or regulatory requirements for determining background are not given in the report; however, 90th percentile values are given for each land use category.

Ontario, Canada

A detailed and comprehensive assessment of background concentrations for both metals and organics in soil is given in Ontario's report entitled *Ontario Typical Range of Chemical Parameters in Soil*, *Vegetation, Moss Bags and Snow* (Ontario Ministry of Environment and Energy, December, 1993). Data on background soil metals concentrations have been compiled using the 98th percentile or Ontario Target Range (OTR₉₈). The 98th percentile was selected because it represents the mean plus two standard deviations of a normally distributed population. Ontario has also decided to divide background concentrations into ten land use categories, ranging from old urban residential to rural agricultural (data is currently available for only two land use categories: old urban and rural parkland). For more information, contact Lee Hoffman, PhD Toxicologist, Hazardous Contaminants Branch, at (416) 323-5118.

입사 보이다 있다면 화장이 나면 화장을 하는 것 같아. 하는 사람들은 살아 하는 사람들은 살살이 있었다.

II. SOIL

What is Soil and How is it Formed?

There are several accepted definitions of soil. A simplistic definition for soil is "...that part of the regolith that can support rooted plants" (Flint, 1977). The term "regolith" literally means "blanket rock" and is defined as the unconsolidated portion of the earth's crust that overlies bedrock. Bushnell (1944) defined soil as a "...natural part of the earth's surface, being characterized by layers parallel to the surface resulting from modification of parent materials by physical, chemical, and biological processes operating under varying conditions during varying periods of time." Soil formation normally can be attributed to five factors: parent material, climate, topography, soil biota (i.e., vegetative cover), and time (Jenny, 1941).

Factors Affecting Soils Formation

The formation of soils is thought to be a weathering process (Thornes, 1979). Reiche (1950) and Keller (1957) defined weathering as "...the response of materials within the lithosphere to conditions at or near its contact with the atmosphere, the hydrosphere, and the biosphere." According to Jenny (1941), the formation and development of soils is controlled by five factors: parent material, climate, topography, soil biota (vegetation), and time. According to Flint (1971), "...the greatest differences among soils now forming are related to climate and vegetation." Specifically, changes in vegetation and soil weathering characteristics correspond to changes in climate and temperature. This trend can be observed across North America. For example, in the dry southwest, the warmer climate evaporates water more quickly, precipitating Ca²⁺ as a carbonate into the "B" soil horizon, producing alkaline conditions. Conversely, in the wet and cold northeast, soluble cations such as Ca²⁺ are transported readily into the soil horizon. The differences in climate and weathering processes in North America form the basis for two primary soil subdivisions: pedocals (calciumrich, dryer climates) and pedalfers (higher amounts of clay and iron in the "B" horizon, wetter climates).

Washington Soils

The State of Washington is a geologically diverse land mass encompassing over 60,000 square miles. Geologic events over the last 200 million years have brought together several separated subcontinents into what is now Washington. Alt and Hyndman (1984) have since reclassified the State of Washington into six main geologic regions: Olympic Peninsula, Puget Sound Basin, Willapa Hills, Cascade Volcanics and North Cascades, Columbia Plateau, and Okanogan Subcontinent/Kootenay Arc areas.

Effect of Soil and Geologic Diversity on Background

For the purposes of this study, it was recognized that Washington is a geologically diverse state and that determination of background elements in surficial soils could be viewed with skepticism. However, it should again be noted that the formation and development of soils is a process that is

governed primarily by factors other than "geologic diversity;" i.e., the formation of soil is a weathering process affected largely by climate and vegetation. Thornbury (1969) illustrates this point by giving credit to two men, Dokuchaiev of Russia and Hilgard of America. Both of these men felt that given similar topographic, climatic, and vegetative conditions, the soil profile would "...essentially be the same, regardless of variability in parent material." Thus, "geologic diversity" or "variability of parent rock material" may in some cases have minimal impact on the development and the elemental composition of soils. However, Thornbury (1969) also conceded that the thinking on the role of parent material is changing; i.e., "...no pedologist today would maintain that under similar environmental conditions a soil profiled developed upon granite would ever be the same as that on limestone."

Summary

This study was designed to measure the background concentrations of metals in soil throughout Washington State. The effects of soil, climate, vegetation and geologic diversity and influences were recognized factors in the conception of this study; however, the definition and measurement of natural background was given top priority. Consequently, the true effects of soils, climate, and geologic diversity upon the results of this study have not been rigorously investigated. Ecology is hopeful that further research on the data from this study will be initiated at some future date.

III. STUDY DESIGN

Objective

The primary objective of this study was to define a range of values that represent the natural concentration of metals in surficial soils throughout Washington State. In order to meet this objective, the Department of Ecology entered into a joint funding agreement with the USGS Tacoma Office to study the ambient concentrations of metals in soils at a series of sites throughout Washington.

Approach

In order to meet the study objective, a small-to-large approach was taken in this study; i.e., a small test site was first investigated and larger areas were gradually added into the scope of work. Thus, the first site to be investigated was a small site in Western Washington known as the Big Soos Creek Drainage basin. This site, which occupies 15 to 30 square miles in southeast King County, was used for the collection of 41 samples at 18 separate locations at depths up to five (5) feet (1987).

Upon completion of the Soos Creek study, the State of Washington was divided into 24 distinct regions based on differences in geology, soils, and climate (see Figure 1). Each of these regions was selected by the USGS Water Resources Division. A decision was then made to select 12 of the 24 regions for a statewide natural background soil metals assessment of Washington. The predominant soil series within each of these 12 regions were then sampled (see Table 3). A decision was also made to focus additional sampling on the four large urban areas within these 12 regions: Puget Sound Basin, Clark County, Yakima, and the Spokane Basin. The 12 statewide regions and four major urban areas were selected because they represent the major urban, industrial, and highly developed core areas in Washington, which is where most toxic waste sites are located.

Figure 1: Soil Regions of Washington State

(See Table 3 for Regional Description)

Table 3: Soil and Regional Geologic Descriptions, Statewide Natural Background Study.¹

9000000000	ne 3. Son and Regional Geologic Descriptions, Statewide Natura	
	Location & Soils Description	Soil Series & Geologic Origin
A	Southwest Washington (Willapa Hills). Developed mainly in continental and marine sedimentary beds along the Pacific Coast (Pringle, 1986). All soils sampled in this Region were developed on upland marine sediments.	Willapa: developed on marine terraces that were cut into marine sediments. Zenker: weathered sandstones. Melbourne: material weathered from marine-deposited siltstone, shale, and fine-grained sandstone.
С	Pacific Coast (Long Beach, Westport, Grays Harbor). Beach sands and "dune lands", i.e. excessively drained ridges formed in fine beach sands.	Netarts: upland areas. Yaquina: basin-like areas between sand dunes (Pringle, 1986).
D	Northern Skagit and Whatcom Counties, Mt. Baker Area. Developed in older sedimentary rocks on the west side of the Cascades (Poulson, 1953).	Cathcart: sandstones and shales. Heisler: glacial moraines in high mountain valleys west of Mt. Baker. Schnorbrush: arkosic sandstone and mountain-side drift material or talus rubble - Nooksack River valley.
F	Puget Sound Basin. Glacial Deposits (till, alluvium, etc.).	Everett: glacial outwash. Spanaway: glacial outwash + volcanic ash.
G	Vancouver-Clark County area. Alluvium derived from a variety of sources.	Lauren: mixed alluvium from Columbia River terraces 50 - 100 ft. above the present river elevation. Wind River: mixed alluvium 150 - 500 ft. above the present river elevation. Sauvie: alluvial bottom lands along the Columbia River. Dollar: terrace deposits. Gee: rolling hills on eroded terraces.
J	Unconsolidated deposits in the Okanogan River Valley.	Colville: mixed alluvium from igneous rocks and volcanic ash. Pouge: terrace deposits, underlain by gravelly sandstones that were deposited as glacial outwash. Cashmere: glacial outwash and more recent alluvium (Lenfesty, 1990)
L	Developed primarily from older sedimentary rocks in the Wenatchee River Valley.	Burch: older alluvium derived from sandstone.
M	Unconsolidated loess and alluvium of the Ellensburg Basin.	Renslow & Selah: loess with caliche layers, underlain by gravel and valley fill. Naches: older valley fill. Reeser: formed over cemented gravels. Wenas: stream bottom material from weathered basalt.
0	Yakima River valley.	Shano & Warden: loess underlain by glaciolacustrine sediments ("Touchet" beds). Weirman: mixed alluvium from flood plains
P	Lincoln-Douglas County area. Thick loess deposits.	Walla & Athena: loess + volcanic ash.
R	Central Columbia Basin. Unconsolidated wind-blown and alluvial material.	Quincy: eolian sands. Shano: loess + volcanic ash. Taunton: wind-worked alluvium.
U	Spokane River Valley.	Marble: wind-worked sandy outwash. Spingdale: outwash mantled with volcanic ash and loess. Ewall & Spens: glacial outwash. es of the U.S. Geological Survey ("Concentrations of Metals in Soils From Selected Regions in the

Note: the information in this table was taken from a report prepared by Kenneth C. Ames of the U.S. Geological Survey ("Concentrations of Metals in Soils From Selected Regions in the State of Washington". Draft report, subject to revisions).

																		•		
					<u>.</u>															
																		Y		
							. 4											11/1		
						100														
And an over the second																				
administrative per control of the co																				
and and the second control of the second control of the second second second second second second second second																				
and any programming the decimal and the control of																				
and and the confidence of the confidence of the control of the control of the confidence of the control of the						医异性性 化二苯基甲甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基														
and and the control of the control o						医脊髓病 化苯基甲酚 医二氏性乳腺 医克克氏 医动物性毒素 医动物性毒素 医动物性神经病 化二氯甲基苯酚														
аналанда араментардада аваналания кака до отчество да кака прет постава ана пака пака да кака прет постава да Става да става да ст						医异性球球 化氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基							等。							
													\$P\$ 1967年,1967年,1968年,1968年,1968年,1968年,1968年,1968年,1968年,1968年,1968年,1968年,1968年,1968年,1968年,1968年,							
						医骨髓 化苯基甲基 医二氏管 医克尔氏试验 医克耳氏试验检试验检试验检试验检试验检试验检试验检试验检试验检试验检试验检试验检试验检试							新生物 (1) 10 10 10 10 16 16 16 16 16 16 16 16 16 16 16 16 16							
						医骨髓 化重量分离 医二氏蛋素素 化试验 医克耳氏试验检尿病 医克里特氏病														
And and provide the designation of the control of t													\$P\$ 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
													经分分分分 化磺胺磺胺磺胺磺胺磺胺磺胺 医克勒氏试验检尿病 医克勒氏试验检尿病 医多种性病 医多种种种 医多种种种种 医多种种种种种种种种种种种种种种种种种种种种种种种							
						医骨髓 化二苯基乙烯 医二氏性医囊炎 医阴道 医克克氏征 医克克氏试验检尿病 医克克氏试验检尿病 医克克氏病 计多数数据记录器 计多数数据记录器														
						医骨髓 化二苯基乙烯 医二氏性医囊炎 化二烷甲基丁基酚 化二烷医丁二烷医丁烷医丁烷医丁烷 化二氯甲基酚 医多种性 医动物性 医动物性							\$P\$《《··································							
						医骨髓 化二苯基甲基 化二氯甲基苯二甲基基甲基甲基二甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲							\$P\$100000000000000000000000000000000000							
						医骨髓 化多角色 医多角性 医克里克氏 医阴道 医克里氏试验检尿 医克里克氏 医克里德氏试验检尿病 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基				《《《··································			\$P\$16. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.							
						医生物 化二苯基甲酚 医人名英克克 人名阿克克克 化二氯苯基 人名英巴克克 法人名 人名英格兰人姓氏格兰人名 化二氯甲基甲基苯酚 医电影				化合物 化二氯化物 化二氯化物 医动物性 医克勒特氏 医克勒氏 医克勒氏试验检尿 医动物性 医动物性小球球球球 化二甲基苯基 医多种			\$P\$100000000000000000000000000000000000							
						医生物 化苯基丙烯 医人名英麦克 化环苯基苯酚 化二氯苯丁 医克里耳氏 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基				化分子 化二氯化甲基乙酰胺 化二氯化甲基苯甲基乙酰胺 医克里克氏 医克里克氏试验检尿病 医动物性腹膜炎 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性			\$P\$《《··································							
						医生物 化电子分泌 医多克曼氏 化邻苯丙基酚 医乳球性 医克里克氏性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基				いっしょう かいかい はんしょう かねがく あんしん はいしょう ちょうしょう ないしゅう しゅうしゅう 大手 ないしゅう おいま おおい いきゅう 東京 アンドラ コープラー・ファイン アンドラー・ディー・ディー・ディー・ディー・ディー・ディー・ディー・ディー・ディー・ディ			\$P\$《《··································							
						医生物 化二苯基乙烯 人名英格兰人 网络美国美国人 医克里氏试验检尿病 法人名英格兰人姓氏克勒的变体				《《《··································			\$P\$《《日本》,从唐代诗诗的《《诗·文》《《古·文》,《《古·文》,《古·文》,《古·文》,《古·文》,《古·文》,《古·文》,《古·文》,《古·文》,《古·文》,《古·文》,《古·文》,《古·文》							
						医生物 化二苯基乙烯 医二氏性多素 化二氯化苯基乙基化 化二氯苯乙基苯甲基乙基 医毒素 经未分割 医乳腺管 化二苯基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲							\$P\$100000000000000000000000000000000000							
										《《《《·································			《《《··································							
													《《《··································		(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
			・ 1000 Minus 1000 Mi										《《《··································		(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

IV. SAMPLING

All soil samples were collected by personnel from the USGS Water Resources Division. The Department of Ecology participated in sampling activities at a few locations. All sampling activities took place between June 1987 and January 1993. A brief description of each sampling area and sampling methodology is included in the summaries below. A summary of all sampling activities is presented in **Table 4**.

Soos Creek Basin, King County

Sixty (60) samples were collected during June 1987 from a 15.9 mi² area immediately north of the Big and Little Soos Creeks confluence. Five (5) sampling sites were located in the Big Soos Creek subbasin and another four (4) were located in the Little Soos Creek subbasin. One shallow sample (0.5 ft.) was collected from these nine locations. Three (3) streamed sediment sampling sites were also located in these subbasins.

Deeper samples (i.e., 5-7 ft.) were collected at selected locations from a backhoe pit. Samples from the "B" and "C" soil horizons were then collected. Shallow samples (0.5 ft.) were collected after first removing the top 1-2" of soil, which contained plant debris and litter. Streamed samples were collected from the upper 1" of locations with fine-grained sand and silt. All of the samples were then sieved for laboratory analysis. For the total-recoverable method, the samples were sieved to particles sizes less than 2 mm.

Statewide Natural Background Assessment

The first phase of this work to be initiated consisted of the collection of sixty (60) samples from the 12 main geologic and urban regions within Washington (5 samples each from regions A, C, D, F, G, J, L, M, O, P, R, U, see Figure 2). The 12-region work was performed during July, August, and September 1990. All of the samples were collected from the "B" or "C" soil horizons that are typically found 2-3 ft. below ground surface. Samples were collected from this zone to minimize the potential effect posed by surface vegetative material on the sampling. The "B" and "C" soil horizons were also selected for sample collection for comparison purposes with toxic waste sites since many of these sites are located in areas where the topsoil has been removed or filled over.

The next phase of work in the statewide assessment involved the collection of samples from the four main urban areas within Washington: Clark County, Yakima Basin, Spokane Basin, and Puget Sound Basin. At each sampling location a shovel was used to dig a 2-ft. wide by 2-ft. deep hole. Each sampling location was consisted of five test pits; i.e., a 2 X 2 ft. test pit was dug at the center and each corner of a 1-acre plot (see **Figure 3**). A stainless-steel soil auger was then used to collect 1-2 liters of material from the bottom 6 inches of each test pit. Material from each of the five holes was sieved down to particles less than 19.0 mm in size and placed in a 20-liter plastic bucket. The soil samples were then thoroughly mixed to form one composite sample.

Figure 2: Soil Sampling Locations in Washington State

Table 4: Background Soil Metals Sampling Summary

Study	No.of Samples Collected	Sampling Locations	Sample Depths (in.)	Number of Samples Collected per Location	Sampling Procedures	Date
Soos Creek	41	18	up to 60	1-3	Pilot project for natural background study. One shallow sample (0.5 ft.) collected from 9 locations + 3 streambed sediment samples. Deeper samples (5-7 ft.) collected from backhoe pits.	1987
Twelve Region	60	60	20-34	1 (composite of 5 locations within a 1 acre area).	Samples collected from 12 geologically distinct regions in Washington (5 samples per region for a total of 60). Only surficial samples are collected: 2 ft. x 2 ft. test pit dug at the center and each corner of a 1 acre plot, see Figure: (five sampling test pits total). Stainless-steel augur used to collect 1-2 liters of soil from the bottom 6 inches of each test pit. Material from each test pit sieved to < 19.0 mm particle size and thoroughly mixed (composited) in a 20 liter plastic bucket. Soil is then sieved to less than 2 mm at Manchester Laboratory.	1990
Clark ¹ County	81	21	24-36	5 from Vertical Profile "A" 13 from Vertical Profile "B"	Two types of samples collected, surficial (see above description) and "vertical profile". Vertical profile samples were collected from a hand-dug test pit approximately 5-6 ft. deep. An effort is made to sample the "A", "B", and "C" soil horizons. Vertical profile samples were not composited. Two types of vertical profile sampling techniques were used. In Version "A", 5 samples were collected at vertical intervals (samples are collected by standing in the test pit and troweling soil from the "A", "B", and "C" soil horizons). In Version "B", 13 samples are collected; 5 samples are collected from the "center" hand-dug test pit and an additional 8 are collected from 4 sampling locations near the test pit (each corner of a 1-acre plot, 2 samples per location).	1991
Yakima² Basin	107	22	24-36	5 from surficial, 5 or 13 from vertical profile.	Surficial (five samples collected from a 1 acre plot with a stainless-steel soil augur, 2 ft. depth) and vertical profile (5 or 13 samples collected from a hand-dug test pit, 5-6 ft. deep) samples collected. All samples field-sieved to < 19 mm.	1991
Spokane Basin³	79	22	24-36	Same as above.	Same as above.	1992
Puget Sound Basin ⁴	122	23	24-36	Same as above.	Same as above.	1993
Total	490	166				

Five (5) samples from Region "G" added for background calculations. Ten (10) samples (total) from Regions "M" and "O" added for background calculations. Five (5) samples from Region "U" added for background calculations.

FIGURE 3: SURFICIAL SOIL SAMPLING SCHEME: 2 X 2 FT. TEST PIT HAND-DUG AT THE CENTER AND EACH CORNER OF A ONE ACRE PLOT. STAINLESS STEEL SOIL AUGER USED TO COLLECT 1-2 LITERS OF SOIL FROM THE BOTTOM 6" OF EACH HOLE. ALL 5 SAMPLES WERE THEN COMPOSITED TO FORM ONE SAMPLE.

FIGURE 4: SOIL SAMPLE PREPARATION, BACKGROUND SOIL METALS PROJECT

MANCHESTER LABORATORY
ANALYSIS
TOTAL RECOVERABLE METALS
AI,As,Be,Cd,Cu,Cr,Fe,Hg,Mn,Ni,Pb,Zn

Vertical Profile Samples

A second sampling procedure, known as "vertical profile" sampling, was also used in the statewide assessment study. Vertical profile samples were collected using the following procedure: a hand-dug hole located at the center of a 1-acre plot was completed to a depth of 5-6 ft.. Samples were then collected from the "A", "B", and "C" soil horizons. Two types of vertical profiles were used. In version "A", 5 samples were collected. In version "B", 13 samples were collected--5 from the center hand-dug hole and an additional 8 from four locations near the hole (each corner of a 1-acre plot; 2 samples per location). Samples collected from vertical profile locations were not composited.

Equipment Decontamination

Before and after collecting samples, all sampling equipment was washed with tap water and detergent (Alconox) and then sequentially rinsed with tap water, a 60/40 acetone/hexane solution, and deionized water.

V. ANALYSIS

Laboratory Analytical Procedures

All of the soil metals data presented in this report except for mercury, was generated by use of the "total recoverable" laboratory method; i.e., EPA Method 3050, Acid Digestion of Sediments, Sludges, and Soils. In this method, a representative (1-2 gram wet weight) sample is digested in nitric acid and hydrogen peroxide. The digestate is then refluxed with either nitric acid or hydrochloric acid. EPA Method 6010, Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP), is then used for analysis after the samples are digested and solubilized. This method measures element-emitted light by optical spectrometry (EPA SW-846, Test Method for Evaluating Solid Waste, Volume 1A, 1986). Mercury analysis was performed by using EPA Method 7471, Manual Cold-Vapor Technique. This technique is based on the atomic absorption of radiation at the 253.7-nm wavelength by mercury vapor. Because of the ability to produce lower detection limits, atomic absorption methods were also used to analyze arsenic and selenium (EPA Methods 7060 and 7740). A summary of all laboratory analytical methods is given in Table 5.

Grain Size

All of the samples sent to Manchester Laboratory were sieved to sizes less than 2 mm prior to analysis. This practice is consistent with Ch. 173-340-740 (7) WAC of the MTCA; i.e., compliance with soil cleanup levels shall be based on total analysis of the soil fraction less than 2 mm in size.

Table 5: Laboratory Analytical Methods Summary

Parameter	Test	Laboratory Methods	Laboratory
Metals ¹	Total Recoverable Metals	Samples are prepared using Method 3050 Acid Digestion of Sludges, Sediments, and Soils. Analysis is performed using EPA 6010, Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP).	Manchester
Metals ¹	Total-Total Metals	At least 95 percent of the solid material is digested using hydrochloric, nitric, hydrofluoric, and perchloric acids. Material is then solubilized and analyzed using ICP & AA techniques.	USGS Denver, Colorado (Arvada)
As	Graphite Furnace Atomic Absorption (GFAA)	EPA 7060 & 7740	Manchester
Hg	Cold Vapor	EPA 7471 Manual Cold-Vapor Technique	Manchester

¹ Al, As, Be, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn

VI. STUDY RESULTS

Data Analysis

Since more than one sample was collected at many sampling locations, a decision was made to simply average all of the measured values per location, including sample splits and duplicates. For each of the twelve elements, one value is reported per sampling location. Thus, a sample population of 166 was used for the calculation of natural background values (166 sampling locations). One-half the detection limit value was also used for non-detect values, per MTCA specifications (Ch 173-340-708 (11)(e) WAC).

Calculation of Background Values

Ecology's MTCAStat program (MTCAStat is a software package developed for use with Microsoft Excel to meet the need for a fast, simple, integrated method of performing routine statistical analyses described in the statistical *Guidance for Ecology Site Managers*) was used to calculate 90th percentile values for 12 elements (Al, As, Be, Cd, Cr, Fe, Hg, Mg, Mn, Ni, Pb, Zn). The 90th percentile value is used by Ecology to calculate natural background values. Statewide and area or regional natural background values were calculated for Clark County, Puget Sound, Yakima, and Spokane. Statewide 90th percentile values are given in Table 6 and Figure 5.

What is the 90th Percentile Value?

The 90th percentile is a value that 10% of a given data set will exceed (90th = 90% data below, 10% data above). Another way of thinking about the 90th percentile is you have a one-in-ten chance of having a sample that exceeds the specified concentration.

Why is this important?

Ecology uses the 90th percentile as the default value for background calculations. The 90th percentile value was selected as a result of Monte Carlo simulations of lognormal and normally distributed data (ref: Statistical Guidance for Site Managers). The 90th percentile is a conservative value; i.e., 10% of the data will exceed it. For example, in a normal distribution or bell-shaped curve, the 90th percentile is equal to 1.28 standard deviations from the mean. In the same distribution, the 95th percentile is equal to 1.96 standard deviations and the 99th percentile is equal to 3.0 standard deviations. Background values in some states such as Michigan, and in Ontario (Canada) are based on 99th and 98th percentile values (in a normal distribution, the 99th percentile = mean + 3 standard deviations, the 97.5 percentile = mean + 2 standard deviations).

90th Percentile Comparison

A summary comparison or 90th percentile values is given in **Table 7**. The sample population for each regional group is given in **Table 7** and **Figure 6**. When comparing 90th percentile values between data sets, the following observations were made:

- ▶ Five of the 13 maximum 90th percentile values came from one data set, Group "W" (Al, Cr, Cu, Hg, Ni). This occurrence is probably due to the smaller sample population (15) of Group "W" (note: Group "W" is comprised of Regions "A", "C", and "D" and encompasses that area outside of the Puget Sound Basin and Clark County regions),
- ► Conversely, seven of the minimum 90th percentile values came from one data set, Spokane Basin (Al, Cr, Cu, Fe, Hg, Ni, Zn). Additionally, when compared against other data sets, the Spokane data tended to have the <u>least</u> amount of variation from maximum to minimum values.
- The west-side 90th percentile values are on average 1.5 times higher than the east-side values (see **Table 8 and Figures 7-9**). The lone exception to this was the east-side 90th percentile value for arsenic, which was 15% higher than the west-side value. The extremities in climate, vegetation, and geology between Western and Eastern Washington are thought to be the primary reasons for variations in the west/east 90th percentile values.

Background Values: Washington and Other States

A comparison of Washington's 90th percentile values to those from other states or other background studies is presented in **Table 9** and **Figure 10**. This comparison found that the background values identified in Washington are very similar to those detected in other states or other studies.

TABLE 7: COMPAR	ISON OF	90th PERC	ENTILE	/ALUES							ALL VALUES = MG/KG			
	n	Al	As AA	As ICP	Be	Cd	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Zn
GROUP "W"	15	62,905	8.47	N/A	0.75	0.10	78.46	52.85	49,170	0.13	691.75	54.19	10.87	85.56
PUGET SOUND	45	32,581	7.30	22.80	0.61	0.77	48.15	36.36	36,128	0.07	1,146.00	38.19	16.83	85.06
CLARK COUNTY	26	52,276	5.81	60.80	2.07	0.93	26.57	34.43	58,665	0.04	1,511.00	21.04	24.02	95.52
WEST (ALL)	86	45,735	6.37	46.21	1.51	1.20	47.40	43.23	50,125	0.08	1,337.27	44.20	20.42	98.39
STATEWIDE	166	37,206	6.99	41.81	1.44	0.99	41.88	36.01	43,106	0.07	1,094.85	38.19	17.09	85.82
EAST (ALL)	80	28,299	7.61	36.17	1.27	0.81	31.88	28.40	36,644	0.04	836.00	24.54	13.10	80.91
YAKIMA BASIN	32	33,379	5.13	41.79	1.57	0.93	38.27	26.47	51,451	0.05	1,104.84	45.89	11.00	78.71
SPOKANE BASIN	27	21,376	9.34	20.83	0.84	0.72	17.81	21.61	25,026	0.02	663.48	16.19	14.91	66.40
GROUP "E"	21	25.591	5.76	N/A	0.61	N/A	37.80	28.42	29.631	0.02	526.59	22.41	9.85	67.47

TABLE 8: COM	<i>MPARISON</i>	OF WES	T/EAST 90	th PERC	ENTILE VAL	.UES				ALL VAL	UES = MG/KG	
	Al	As	Be	Cd	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Zn
WEST (ALL)	45,735.00	6.37	1.51	1.20	47.40	43.23	50,125.00	0.08	1,337.27	44.20	20.42	98.39
EAST (ALL)	28,299.00	7.31	1.27	0.81	31.88	28.40	36,644.00	0.04	836.00	24.54	13.10	80.91
RATIO W:E	1.62		1.19	1.48	1.49	1.52	1.37	2.00	1.60	1.80	1.56	1.22
MEAN RATIO	1.53											

*NA = VALUE NOT AVAILABLE

TABLE 9: COMPARISON OF WASHINGTON BACKGROUND VALUES TO OTHER STATES (MG/KG)

		22.5		V/I	C-M		10777		177	
WASHINGTON 90th Percentile (Statewide)	7	1.5	1	41.8	36	17	1095	0.07	38.2	85.8
MICHIGAN Mean + 3 Standard Deviations	7	*NA	1	26.2	72.2	47	855.8	0.27	30.9	90.3
NEW JERSEY 90th Percentile (Rural)	4	1.63	0.15	16.5	12.8	22	561	0.16	18.7	65.9
ONTARIO, CANADA 98th Percentile (Class I Soil - Rural)	11	1.1	0.71	58	41	45	2,200	0.13	38	120
USGS Nationwide (Shacklette & Boerngen, 1984)	7	0.92	*NA	25	54	19	550	0.1	19	7

- WASHINGTON 90th Percentile (Statewide)
- ♦ MICHIGAN Mean + 3 Standard Deviations
- △ NEW JERSEY 90th Percentile (Rural)
- ONTARIO, CANADA 98th Percentile (Class I Soil -Rural)
- USGS Nationwide (Shacklette & Boerngen, 1984)

VII. ANALYSIS OF REGIONAL VARIATION

Overview

Due to time, budget, and resources, a highly sophisticated statistical analysis of the variation in data between regions was not performed. Routine comparative methods were instead employed to analyze the data. Due to the significant variation in climate, soils, geology, vegetation, population, etc. throughout Washington, the decision was made to simply compare the following values from each data set: (a) 90th percentile; (b) maximum and minimum; and (c) median (see Figures 11-22). A brief discussion on the observations made per element is also included in this section.

Data Sets

For comparison purposes, the data were subdivided into nine basic groups (see Table 10 below). Sampling data from Puget Sound, Yakima Basin, Clark County, and Spokane Basin comprise four groups. Three additional groups were created by pooling data into west, east, and statewide groups. The Cascade Mountain Range was used as a dividing line for the west/east data groups. Group "W" contains that data independent of the Puget Sound and Clark County data sets. Group "E" contains that data independent of the Yakima and Spokane Basins data sets.

Table 10: Data Subdivisions

Data Group	Sample Population	Definition
Group "W"	15	Whatcom and Skagit Counties, Pacific Coast (Grays Harbor, Lewis, and Pacific Counties).
Puget Sound	45	Snohomish, King, Pierce, Thurston, Mason, Jefferson, Island, San Juan, and Clallam Counties.
Clark County	26	Clark County
West (All)	86	All sampling locations west of the Cascade Mountain Range
Statewide	166	All statewide sampling locations
East (All)	80	All sampling locations east of the Cascade Mountain Range
Yakima Basin	32	Yakima, Kittitas, Chelan, and Grant Counties
Spokane Basin	27	Spokane, Lincoln, and Pend Oreille Counties
Group "E"	21	Benton, Spokane, Lincoln, Adams, Okanogan, and Whitman Counties

Aluminum

A notable west-east trend was observed in the aluminum data set (see Figure 24). Both the 90th percentile and lognormal mean values for west-side are nearly twice as high as the east side data (see Table 11 below). The reason for this is unknown; however, it is suspected that the wet west-side climate is probably a significant factor (i.e., the formation of bauxite). Higher aluminum concentrations (greater than 40,000 mg/kg) were detected in Whatcom County (Mt. Baker), along the Pacific Coast (Pacific County) and the Clark County Vancouver area. Significantly lower aluminum values (less than 20,000 mg/kg) were detected in the Spokane Basin (see Figure 11).

Table 11: Aluminum 90th Percentile and Lognormal Mean Values - West and East Data

Value	West $(n = 86)$	East $(n = 80)$
90th Percentile	45,700	28,300
Lognormal Mean	25,500	18,200

All Values = mg/kg n = sample population

Arsenic

The statewide distribution of arsenic in soil was remarkably uniform throughout the state (between 1 - 10 mg/kg, see Figures 12 and 26). Specifically, there was very little variation in the median and 90th percentile values for each data set (see Figure 9). One possible reason for nominal variation in the arsenic data set is the used of atomic absorption analytical methods, which is considered to be more reliable for arsenic at lower concentrations (as opposed to ICP methods). Arsenic was the only element whose 90th percentile value was higher in Eastern Washington. Higher arsenic values (greater than 50 mg/kg) were detected in the Tacoma vicinity (Pt. Defiance Park)--probably due to fallout from the Asarco Smelter. Higher values were also detected in the Yakima Basin, which may be due to the extensive use of arsenic-based pesticides.

Beryllium

The variation in the statewide distribution of beryllium was somewhat unusual. Specifically, higher values (greater than 1 mg/kg) were observed only in the Vancouver area and Central Washington (Yakima and Ellensburg). The Clark County beryllium data are also unique in that the data are normally distributed and the 90th percentile value, 2.1 mg/kg, was notably higher than all other data sets (see Figure 13).

Cadmium

The statewide distribution of cadmium was relatively uniform, with approximately 40% (61 out of 165 values) of the data set at or below detection limits (less than 0.2 or 0.8 mg/kg, see Figures 14 and 30).

Chromium

A significant west-east variation was noted in the chromium data set. An examination of the statewide chromium concentration map (see Figure 32) finds that the west-side values are notably higher than the east. Higher chromium values were detected in the Mt. Baker area (Region "D;" Northern Skagit and Whatcom Counties). The reason for the detection of higher chromium values in this area is not known. However, the difference between west to east 90th percentile values (47.4 vs. 31.9 mg/kg) is not considered to be important from a cleanup perspective since the MTCA Method A soil cleanup level for chromium, 100 mg/kg, is over twice the statewide or area background values.

Copper

A slight west-east trend was observed in the copper data set. Specifically, there is a noticeable lack of higher values (greater than 40 mg/kg) in the Spokane Basin region. However, there is a fairly constant distribution (10-100 mg/kg) in copper from Yakima to Seattle (see Figure 33).

Iron

Very little variation was observed in the iron data set. Examination of the X,Y scatter plot (see Figure 35) reveals a straight-line set of values between 1,000 and 100,000 mg/kg. However, there was some variation in the iron data for Clark County, as noted by the detection of the maximum 90th percentile value (58,700 mg/kg) in this region.

Lead

The lead data set is unique in that it appears to mimic statewide population trends; i.e., higher values were detected in more densely populated regions (Seattle, Vancouver, Yakima, and Spokane, see Figure 38). Higher lead values in more densely populated areas may be due to fallout from automobile exhaust. However, an examination of the X,Y scatter plot finds that nearly all the lead values tended to fall between 2 and 20 mg/kg (see Figure 37).

Manganese

The variation in the manganese data set was relatively nominal with nearly all values falling between 100 and 1,000 mg/kg. The one exception was the Clark County data set, which was normally distributed with a median value of 510 mg/kg (max value observed, see **Figure 19**). Higher manganese concentrations (greater than 1,000 mg/kg) were observed in the Vancouver, Yakima, and the Seattle-Tacoma-Olympia corridor.

Nickel

A noticeable west-east trend was observed in the nickel data set. Values greater than 20 mg/kg were not detected east of Yakima (see Figure 44).

Zinc

Very little variation was observed in the statewide zinc data set. Nearly all the values fell between 10 and 100 mg/kg (see Figures 45 & 46).

Other Elements

Background data were also compiled for ten other elements: antimony (Sb), barium (Ba), calcium (Ca), cobalt (Co), magnesium (Mg), sodium (Na), selenium (Se), titanium (Ti), thallium (Tl), and vanadium (V). The Ba, Ca, Co, Mg, Na, Ti, and V data were collected only in the Spokane Basin area, and the data for Ag, Sb, Se is limited since these elements were normally not detected above laboratory detection limits. Because of these two factors, an assessment of the regional variation for these elements was not completed. A brief summary of the 90th percentile values for these elements is given in **Figure 47**.

Antimony

Approximately 10% of the data set (50 samples) exceed laboratory detection limits (ICP analysis @ 3 mg/kg). Based on this data, a 90th percentile value of 5 mg/kg was calculated for Sb.

Selenium

The ICP data for selenium were not assessed because the standard detection limits used were too high (5 - 15 mg/kg). Only 14 selenium samples exceeded atomic absorption (AA) analytical detection limits. Of these 14, only two were given a laboratory code of "J," which means that the analyte was positively identified. The remaining 12 were assigned a laboratory code of "P," which means that the analyte was detected above the instrument detection limit but below the established minimum quantitation limit. Based on those samples exceeding AA detection limits, a 90th percentile value of 0.78 mg/kg was estimated for selenium.

Silver

Less than 10% of the data set (33 samples) exceeded laboratory detection limits (0.3 mg/kg). Based on this data, a 90th percentile value of 0.61 mg/kg was calculated.

Thallium

Values above the laboratory detection limit (5 mg/kg) were not detected.

Why are the West-Side Background Values Higher?

The formation of soils is to a large degree a weathering phenomenon that is heavily influenced by climate and vegetation. Thus, the wet climate and dense vegetation of Western Washington has undoubtedly been a significant factor in the formation of west-side soils. Conversely, the much

dryer climate and sparser vegetative pattern in Eastern Washington has likely produced a different type of soil.

Geologic Diversity

The actual effect of Washington's diverse geologic makeup upon this study is thought to be somewhat nominal. Specifically, nearly all of the data points for the 12 elements fall within one order of magnitude. Thus, if geologic diversity was a significant issue, then the argument could conceivably be made that the data should be spread out across several orders of magnitude. However, it should also be kept in mind that this study focused on surficial soils only. Thus, it may not be appropriate to compare the results of this study against the potential impact of geologic diversity upon the entire soil spectrum.

MAX 90th PERCENTILE	56,550 62 .905	84,900 32.581	54,550 52.276	84,900 45.735	84,900 37.206	56,550 28,299	56,550 33,379	25,850 21.376	29,000 25,591
MEDIAN	21,700	17,900	31,192	21,760	21,956	16,600	20,800	15,000	14,800
MIN NOTE: GROUP "W" =	5,670	7,390	13,750	5,670	5,670	6,140	10,650	8,933	6,140

ALL VALUES = MG/	KG GROUP	"W" PUGET SO	UND CLARK COL	INTY WEST (AL	L) STATEWI	DE EAST (A	L) YAKIMI	SPOKA!	VE GROUP"
MAX	8.99	17.17	6.89	17.168	28.6	28.6	28.6	10.32	7.19
90th PERCENTILI	8,47	7.30	5,81	6.37	6.99	7.61	5,13	9.34	5.76
MEDIAN	2.8	2.86	3.045	2.91	2.92	2.95	2.64	4.99	2.53
MIN	1.7	1.45	1.45	1.45	0.5	0.5	0.89	1.13	0.5
NOTE: GROUP "W"	= WHATCOM, SK	AGIT, GRAYS HARE	BOR, LEWIS, AND PAG	CIFIC COUNTIES					
GROUP "E" :	BENTON, SPOKA	ANE. LINCOLN. ADA	MS. OKANOGAN. AN	ID WHITMAN COUNT	TIES		*		

ALL VALUES = MG/K	g GROUP'	'W" PUGET SOL	IND CLARK COL	INTY WEST (A	L) STATEWI	DE EAST (AL	L) YAKIMI	A SPOKANI	E GROUP "E"
MAX	0.89	0.875	2.155	2.155	2.79	2.79	2.79	0.89	0.875
90th PERCENTILE	0.75	0.61	2.07	1.51	1.44	1.27	1.57	0.84	0.61
MEDIAN	0.4	0.358	1.479	0.53	0.67	0.72	0.93	0.655	0.305
MIN	0.1	0.185	0.3	0.1	0.1	0.21	0.39	0.37775	0.23
NOTE: GROUP "W" =	WHATCOM, SKA	AGIT, GRAYS HARB	OR, LEWIS, AND PAC	CIFIC COUNTIES					
GRCUP "E" = 1	CENTON, SPOKA	ANÉ, LINCOLN, ADA	MS, OKANOGAN, AN	d Whitiman Coun	TiES			2	

ALL VALUES = MG/K	GROUP	W" PUGETSC	OUND CLARK COL	NTY WEST (A	LL) STATEWI	DE EAST (AL	L) YAKIMA	SPOKAN	E GROUP "E"
MAX	N/A	5	1.32	5	5	1.32	1.32	0.685	N/A
90th PERCENTILE	0.1	0.77	0.93	1.2	0.99	0.81	0.93	0.72	N/A
MEDIAN	N/A	0.4	0.49	0.7	0.49	0.45	0.49	0.395	N/A
MIN	N/A	0.1	0.155	0.1	0.1	0.125	0.155	0.125	N/A
NOTE: GROUP "W" =	WHATCOM, SK	AGIT, GRAYS HAR	BOR, LEWIS, AND PAC	IFIC COUNTIES					
OROUP "E" = L	DENTON, SPOKA	NE, LINCOLN, AD	ams, okanogan, ani	WHITMAN COU	ITIES				

ALL VALUES = MG/I	G GROUP	W" PUGETSO	UND CLARK COUN	TY WEST (A	LL) STATEWIL	E EAST (AL	.L) YAKIMA	SPOKAN	IE GROUP "E"
MAX	163	235	28.83	235	235	110.3	110.3	20.25	71.3
90th PERCENTILE	78.46	48.15	26.57	47.4	41.88	31.88	38.27	17.81	37.8
MEDIAN	26.7	22	21.99	22	18.42	13.15	16.42	11.78	12.6
MIN	10.1	12	4.42	4.42	2.56	2.55	2.55	4.5	5
NOTE: GROUP "W"	= WHATCOM, SKA	AGIT, GRAYS HARI	BOR, LEWIS, AND PACI	FIC COUNTIES					
GROUP "E" =	BENTON, SPOKA	NE. LINCOLN. AD	AMS. OKANOGAN. AND	WHITMAN COUN	TIES				

ALL VALUES = MG/KG	GROUP"	N" PUGET SOU	ND CLARK COL	JNTY WEST (A	LL) STATEWIL	E EAST (AL	L) YAKIMA	SPOKAN	IE GROUP "E"
MAX	99.4	243.5	51.71	243.5	243	53	50.15	29.03	53
90th PERCENTILE	52.85	36.36	34.43	43,23	36,01	28.4	25.47	21.61	28.42
MEDIAN	8.05	15	21.78	17.8	17.07	16.3	19.225	14.14	14.7
MIN	4.33	4	9.71	4	4	4	4.125	4.04	9.1
NOTE: GROUP "W" = V	WHATCOM, SKA	GIT, GRAYS HARBO	OR, LEWIS, AND PA	CIFIC COUNTIES				•	
GROUP "E" = B	ENTON, SPOKA	NE, LINCOLN, ADAM	is, okanogan, ar	ID WHITMAN COUN	ITIES				

ALL VALUES = MG/KG	GROUP "W	" PUGET SOL	IND CLARK COU	NTY WEST (AL	L) STATEWID	E EAST (AL	L) YAKIMA	SPOKAN	E GROUP "E"
MAX	62,800	112,500	59,850	112,500	112,500	58,800	58,880	27,000	30,000
90th PERCENTILE	49,170	36,128	59,665	50,125	43,106	36,644	51,451	25,026	29,631
MEDIAN	18,200	17,050	38,508	21,433	22,033	22,116	28,821	18,150	21,300
MIN	9,160	5,920	16,350	5,920	5,025	5,025	5,025	9,670	10,400
NOTE: GROUP "W" =	WHATCOM, SKAG	SIT, GRAYS HARB	OR, LEWIS, AND PAC	FIC COUNTIES					
GROUP "E" = E	BENTON, SPOKAN	IE, LINCOLN, ADAI	VIS, OKANOGAN, AND	WHITMAN COUNT	TES				

ALL VALUES = MG/KG	GROUP	"W" PUGET SOL	IND CLARK COUN	ITY WEST (AL	L) STATEWI	DE EAST (A	LL) YAKIMZ	SPOKA!	VE GROUP "E"
MAX	12	29.6	207.5	207.5	207.5	17.1	17.1	16	11.7
90th PERCENTILE	10.87	16.83	24.02	20.42	17.09	13.1	11	14.91	9,85
MEDIAN	4	9.8	6.86	8.2	7.9	7.82	6.525	10.8	6.4
MIN	2.1	4.65	2.125	2.1	2.1	2.17	2.17	6. <i>75</i>	4.2
NOTE: GROUP "W" = WHATCOM, SKAGIT, GRAYS HARBOR, LEWIS, AND PACIFIC COUNTIES									
GROUP "E" = BE	GROUP "E" = BENTON, SPOKANE, LINCOLN, ADAMS, OKANOGAN, AND WHITMAN COUNTIES								

ALL VALUES = MG	MG GROUP	"W" PUGET SO	UND CLARK COU	NTY WEST (AL	L) STATEWID	E EAST (AL	L) YAKIMA	SPOKAN	IE GROUP "E"
MAX	930	2750	1960	2750	2750	1546.12	1546	769.5	652
90th PERCENTIL	E 691.75	1146	1511	1337.27	1094.85	836	1104.84	663.48	526.59
MEDIAN	231	474	915.5	531.25	509.58	490.75	589	470	345
MIN	78	90	150	78	78	164.45	164.45	354.5	233
NOTE: GROUP "W" = WHATCOM, SKAGIT, GRAYS HARBOR, LEWIS, AND PACIFIC COUNTIES									
GROUP "E"	= BENTON, SPOKA	ANE, LINCOLN, ADA	MS, OKANOGAN, AN	D WHITMAN COUNT	TES				

ALL VALUES = MG/K	G GROUP"	N" PUGET SOL	IND CLARK COU	NTY WEST (AL	L) STATEWIL	E EAST (AL	L) YAKIMA	SPOKANE	GROUP "E"
MAX	0.185	0.0944	0.047	0.185	0.185	0.312	0.1165	0.1312	0.025
90th PERCENTILE	0.13	0.07	0.04	0.08	0.07	0.04	0.05	0.02	0.02
MEDIAN	0.038	0.04475	0.026	0.0358	0.03	0.014	0.02075	0.01225	0.007
MIN	0.009	0.012	0.0125	0.009	0.004	0.004	0.00725	0.00425	0.004
NOTE: GROUP "W" = WHATCOM, SKAGIT, GRAYS HARBOR, LEWIS, AND PACIFIC COUNTIES									
GROUP "E" =	GENTON, SPCKAI	NE, LINCOLN, ADAI	MS, OKANOGAN, AND	WHITMAN COUNT	TES .				

ALL VALUES = MG/K	g GROUP"	W" PUGET SOL	IND CLARK COL	NTY WEST (AL	L) STATEWII	DE EAST (AL	L) YAKIMA	SPOKA	VE GROUP "E"
MAX	91.10	244.50	66.75	244.50	244.50	163.00	163.00	18.60	34.10
90th PERCENTILE	54.19	38.19	21.04	44.20	38,19	24,54	45.89	16.19	22.41
MEDIAN	19.10	23.00	16.23	19.20	16.43	12.50	16.30	10.15	11.70
MIN	7.60	9.00	7.00	7.00	2.15	2.15	2.15	4.60	6.40
NOTE: GROUP "W" = WHATCOM, SKAGIT, GRAYS HARBOR, LEWIS, AND PACIFIC COUNTIES									
GROUP "E" =	GROUP "E" = BENTON, SPOKANE, LINCOLN, ADAMS, CKANOGAN, AND WHITMAN COUNTIES								

ALL VALUES = MG/KG	GROUP "	W" PUGET SOL	IND CLARK COU	ITY WEST/AL	.) STATEWII	DE EAST (AL	L) YAKIMA	SPOKA	VE GROUP "E"	
MAX	116	132.5	97.7	132.5	132.5	244.5	101.43	71	82.3	
90th PERCENTILE	85.56	85.06	95.52	98.39	85.82	80.91	78.71	66.4	67.47	
MEDIAN	44.5	43.65	78.5	54.075	51.12	50.64	52.9	50.9	41	
MIN	21.1	12	21.4	12	12	26.3	39.3	29.7	26.3	
NOTE: GROUP "W" = WHATCOM, SKAGIT, GRAYS HARBOR, LEWIS, AND PACIFIC COUNTIES										
GROUP "E" = Bi	GROUP "E" = BENTON, SPOKANE, LINCOLN, ADAMS, OKANOGAN, AND WHITMAN COUNTIES									

	로마스 사람들은 사람들이 되었다. 그렇게 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
	물에 가는 사람들이 있는 것을 하였다. 이 사람들은 사람들은 사람들이 되었다. 그는 사람들은 사람들이 되었다. 현실 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
	불어 되었다는 이번 수밖을 들려 보다 하는 아무리를 하는데 나는 이번 사람들이 되었다.	
] 일어 그렇게 그 왜 그릇을 가지 않는 물 되었는 데이 한 중 없는 그런 그는 사람 사람이 됐어요. ^ 그	
	를 보고 있는 것이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
	를 가는 보통하게 하면 생각하다고 있는 얼굴을 모르는데 그림이다는 보통은 보통된 그림을 하시다면 보다.	
. 1		
- 1		
The state of the s	[- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	기 보면 이 전경 속에 보셨다면요. 이 바로 보이 되었다. 이 보고 보는 일이 되었다는 이 보는 이 보는 것이라고 있다. 	
	기 보면 이 전경 속에 보셨다면요. 이 바로 보이 되었다. 이 보고 보는 일이 되었다는 이 보는 이 보는 것이라고 있다. 	

VIII. USE AND APPLICATION OF BACKGROUND VALUES

Site-Specific or Area Studies of Natural Background

The intent of this report is to provide detailed information on the natural background concentration of metals in soils throughout Washington State. <u>However, site-specific assessments of natural or area background can still be initiated if desired.</u> At least ten samples must be collected for a site-specific study into natural background and at least 20 are required for area background (Ch 173-340-708 11 (d) WAC).

Use of the Statewide and Regional Values

Statewide and regional 90th percentile values for the Puget Sound Basin, Clark County, Yakima Basin, and Spokane Basin are presented in Table 6. The statewide values can be used for any purpose (i.e., comparison against data from toxic waste sites, waste streams, etc.) and there are no restrictions on the use of this data. The regional 90th percentile values for Puget Sound, Clark County, Yakima Basin, and Spokane Basin are to be compared against data from those regions only (see Table 12 below).

Table 12: Counties Encompassed by Regional Background Values

Region	Counties
Puget Sound Basin	Clallam, Jefferson, Mason, Thurston, Pierce, King, Kitsap, Island, Snohomish
Clark County	Clark, Cowlitz, Skamania
Yakima Basin	Yakima, Kittitas, Klickitat, Chelan, Benton
Spokane Basin	Spokane, Lincoln, Adams, Whitman

Other Areas

Sites that are not located within the four main regional areas may use the statewide values or the 10 sampling locations (see latitude/longitude coordinates, data tables) that are closest to a given site or area.

Application of Background Values

When comparing cleanup- or contaminated-site data against background values, the 95% upper confidence limit (UCL) of a given data set is compared against the 90th percentile of the background data set. Please refer to Ecology's publication entitled Statistical Guidance for Ecology Site Managers (August, 1992). Detailed instructions on how to derive soil cleanup standards based on background standards are included in that document. Please use caution when comparing individual data points against the 90th percentile value of the background data set. When comparing individual

data points against the 90th percentile value, there is a 10% chance that an individual data point will exceed the 90th percentile value.

Alternative Procedures

The 90th percentile has been selected by Ecology as the default assumption for determining background. If background values are used as cleanup levels, no single sample concentration shall be greater than two times the 90th percentile value and less than ten percent of the sample concentrations shall exceed the 90th percentile value (Ch 173-340-740 (7) (e), see Table 13). However, alternative procedures for determining background are allowed. Specifically, a numerical cleanup standard is established, based on different data evaluation procedures. This could be the result of site-specific characteristics, such as the form of the background data distribution, its coefficient of variation (CV) or degree of skew, the number of samples available, or other such factors. For more information on alternative procedures for determining background, consultant Ecology's Statistical Guidance for Site Managers (August, 1992, see flowchart of p. 38 for alternative procedures).

TABLE 13: 90th	PERCE	NTILE VA	LUES								ALL VA	LUES = MG/K
	Al		As		Be		Cd		Cr		Cu	
GROUP "W"	62,905	125,810	8.47	16.9	0.8	1.5	0.1	0.2	78.5	156.9	52.9	105.7
PUGET SOUND	32,581	65,162	7.30	14.6	0.6	1.2	0.8	1.5	48.2	96.3	36.4	72.7
CLARK COUNTY	52,276	104,552	5.81	11.6	2.1	4.1	0.9	1.9	26.6	53.1	34.4	68.9
WEST (ALL)	45,735	91,470	6.37	12.7	1.5	3.0	1.2	2.4	47.4	94.8	43.2	86.5
STATEWIDE	37,206	74,412	6.99	14.0	1.4	2.9	1.0	2.0	41.9	83.8	36.0	72.0
EAST (ALL)	28,299	56,598	7.61	15.2	1.3	2.5	8.0	1.6	31.9	63.8	28.4	56.8
YAKIMA BASIN	33,379	66,758	5.13	10.3	1.6	3.1	0.9	1.9	38.3	76.5	26.5	52.9
SPOKANE BASIN	21,376	42,752	9.34	18.7	0.8	1.7	0.7	1.4	17.8	35,6	21.6	43.2
GROUP "E"	25,591	51,182	5.76	11.5	0.6	1.2	N/A	N/A	37.8	75.6	28.4	56.8
	Fe		Hg		Mn		Ni		Pb		Zn	
GROUP "W"	49,170	98,340	0.13	0.26	691.8	1,384	54.2	108.4	10.9	21.7	85.6	171.1
PUGET SOUND	36,128	72,256	0.07	0.14	1146.0	2,292	38.2	76.4	16.8	33.7	85.1	170.1
CLARK COUNTY	58,665	117,330	0.04	0.08	1511.0	3,022	21.0	42.1	24.0	48.0	95.5	191.0
WEST (ALL)	50,125	100,250	0.08	0.16	1337.3	2,675	44.2	88.4	20.4	40.8	98.4	196.8
STATEWIDE	43,106	86,212	0.07	0.14	1094.9	2,190	38.2	76.4	17.1	34.2	85.8	171.6
EAST (ALL)	36,644	73,288	0.04	0.08	836.0	1,672	24.5	49.1	13.1	26.2	80.9	161.8
YAKIMA BASIN	51,451	102,902	0.05	0.10	1104.8	2,210	45.9	91.8	11.0	22.0	78.7	157.4
SPOKANE BASIN	25,026	50,052	0.02	0.04	663.5	1,327	16.2	32.4	14.9	29.8	66.4	132.8
GROUP "E"	29,631	59,262	0.02	0.04	526.6	1,053	8	44.8	9.9	19.7	67.5	134.9

SHADED COLUMN = TWICE THE 90th PERCENTILE VALUE

NOTE ON COMPLIANCE MONITORING: A) NO SINGLE SAMPLE CONCENTRATION SHALL BE GREATER THAN TWO TIMES THE 90th PERCENTILE VALUE, B) LESS THAN TEN PERCENT OF THE SAMPLE CONCENTRATIONS SHALL EXCEED THE SOIL CLEANUP LEVEL. Ch 173-340-740 (7) (e) WAC.

	공하는 동시를 만족하면 가는 경우 중요를 모르는 것을 때	
		그런 하는 사람들은 하는 그리고 있는 사람들이 되었다.
		그는 내용 강화를 하고 하는 것으로 되는 것
		는 보통 발생하게 되면 보고 있어요. (1945년 1일 1일 시간 1945년 1일
		그런데 그렇게 들어서 살아가 들었다면 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	이 경우를 하고 있다. 학생 보고 말을 맞았다.	
[[전 - 기기 - 기가 목 및 모든 # -		
		그를 경찰의 살아왔다. 전 경찰에 그리는 사람은 말
		그렇다 되면 된 목 목 수이 하이네 하는 그 이 이 것

IX. SCATTER PLOTS, DISTRIBUTION GRAPHS, & CONCENTRATION MAPS

Summary

Scatter plots, statistical distribution graphs, and statewide concentration maps for the 12 elements are presented in this section. The statewide concentration maps were prepared by Ecology's Environmental Investigation and Laboratory Services Program (EILS) via use of their geographic information system (GIS). The XY scatter plots were prepared using Microsoft Excel.

FIGURE 23: ALUMINUM X,Y SCATTER PLOT

FIGURE 25: ARSENIC X,Y SCATTER PLOT

9-6

> 1 mg/kg

Figure 28: Beryllium Concentrations

< 1 mg/kg

9-8

9-10

9-12

9-14

9-16

9-18

9-20

9-22

9-24

	Ag	Ва	Ca	Co	Mg	Na	Sb	*Se	Ti	٧	
90th Percentile	0.61	255.00	5,493	11	3,415	298	5	0.78	1,109	45	
Population (n)	33	72	72	72	72	69	50	14	72	72	
Detection Limit	0.3						3	0.19			
Number > Detection Limit	33						50	14			

^{*} Se 90th BASED ON ATOMIC ABSORPTION (AA) ANALYSIS.

Note: Ba, Ca, Co, Mg, Na, Ti, V data from Spokane Basin Only. Data may not be representative of statewide conditions.

X. DATA TABLES

Data Retrieval

All of the Manchester Laboratory analytical data for this project was obtained and retrieved electronically for QA/QC purposes. A data extraction program known as "Monarch" was then used to compile the data into spreadsheet form. Microsoft Excel was then used to compile all of the data into a spreadsheet format.

Interpreting the Data Tables

Two sets of data tables have been included. The first set contains values for Al - Fe. The second set contains data for Pb - Zn. All of the data table values are in units of parts per million or mg/kg. A brief description of each column in the data table is presented below.

Latitude and Longitude

Latitude and longitude coordinates have been assigned to all 166 sampling locations (first two columns, data tables).

Site Codes

The column entitled "Site" contains an alpha-numeric code for each sampling location. Each site code can be broken down into four parts: primary code, regional code, sample location number, and sample depth. Example site codes and their definitions are given in **Table 14** below. Not every sample has all four parts; for example, samples collected in the 12-region study do not have a primary code. Several samples have a suffix with the letters "SS," "DUP," "V," or "RS." Definitions for these codes are given in **Table 15**.

Table 14: Site Code Definitions (read table left to right).

Site Code	Primary Code	Regional Code	Sample Location	Sample Depth
"SWRA2.5"	SW = Statewide	RA = Region "A"	N/A	2.5 = feet
"PSL2A0.5"	PSL = Puget Sound, Soos Creek	N/A	No. 2	0.5 = feet
"CL81.4V"	CL = Clark County	N/A	No. 8	1.4 = feet V = Vertical Profile Sample
"PS20.3"	PS = Puget Sound	N/A	No. 2	0.3 = feet
"SB310.3SS"	SB = Spokane Basin	N/A	No. 31	0.3 = feet "SS" = Sample Split
"YBRO2.5"	YB = Yakima Basin	RO = Region	N/A	2.5 = feet

Table 15: Site Code Suffix Definition

Suffix	Definition
"V"	Vertical Profile Sample
"SS"	Sample Split
"DUP"	Duplicate Sample

Number Column

The Manchester sample number is given in this column. The first two digits give the year in which the sample was analyzed. The area in which a sample was collected can also be identified by sample number; i.e., all of the Soos Creek work was done in 1987, the 12-region study was completed in 1990, etc. (see **Table 16** below)

Table 16: Background Soil Metals Study Chronology

Study	Completed In
Soos Creek	1987
Twelve Region	1990
Clark County	1991
Yakima Basin	1991
Spokane Basin	1992
Puget Sound Basin	1993

LAT	LON	SITE	NO.	All		4.8		100		Cd		•		Cit		Fig.	
463937	1234536	SWRA2.5	90478080	53,500	53,500	4.55	4.55	0.46	0.46	<0.2	<0.2	51.5	51.5	33.9	33.9	41,800	41,800
465952	1233542	SWRA2.5	90478081	50,500	50,500	3.48	3.48	0.44	0,44	<0.2	<0.2	41.2	41.2	22.5	22.5	33,000	33,000
463110	1233352	SWRA2.5	90478082	51,500	51,500	1.9	1.9	0.71	0.71	<0.2	<0.2	56.7	56.7	99.4	99.4	62,800	62,800
464120	1225527	SWRA2.3	90478083	28,800	28,800	1.8	1.8	0.65	0,65	<0.2	<0.2	26	26	23.2	23,2	26,100	26,100
463337	1230623	SWRA2.3	90478084	37,800	37,800	8.12	8.12	0.89	0.89	<0.2	<0.2	34.2	34.2	24.4	24.4	38,400	38,400
465553	4240057	SWRC2.5	90478086	7.070	7.070	20	4.6	0.1	0.1	<0.2	<0.2	16	16	5.2	5.2	13,200	13,200
		SWRC2.6		7,070	7,070	2.9	2.9	0.1 0.13	0.1 0.13	<0.2 <0.2	<0.2	14.8	0.77.700.000	888	300000000000000000000000000000000000000	8888	
465125 463628		SWRC2.6	90478087	7,450	7,450	2.8	2.8	W	9999999999	***	. 3000000000000000000000000000000000000	33333	14.8	5.18	5.18	14,100	14,100
462602		SWRC2.5	90478088	6,020	6,020	1.8 1.7	1.8 1.7	0.1	0.1	<0.2 <0.2	<0.2 <0.2	12.2	12.2 10.1	4.33	4.33	11,100	11,100
			90478089	5,670	5,670	33	- 33333333333	0.1	0.1	888	000000000000000000000000000000000000000	10.1	200000000000000000000000000000000000000	4.4	4.4	11,300	11,300
462116	1240 157	SWRC2.5	90478090	6,680	6,680	2.32	2.32	0.1	0.1	<0.2	<0.2	11.4	11.4	5.04	5.04	9,160	9,160
483954	1222930	SWRD2.3	90478092	21,700	21,700	2.8	2.8	0.29	0.29	<0.2	<0.2	32	32	7.2	7.2	17,100	17,100
483908	1222926	SWRD2.3	90478093	16,600	16,500	1.9	1.9	0.4	0.4	<0.2	<0.2	26.7	26.7	6.23	6.23	13,900	13,900
484152	1222929	SWRD2.6	90478094	16,400	16,400	2.6	2.6	0.26	0.26	<0.2	<0.2	25.1	25.1	8.05	8.05	18,200	18,200
484809	1221033	SWRD2.7	90478095	25,100	25,100	4.65	4.65	0.6	0,6	<0.2	<0.2	45.2	45.2	18.7	18,7	23,300	23,300
484332	1220527	SWRD2.5	90478096	46,100	46,100	8.99	8.99	0.61	0.61	<0.2	<0.2	163	163	50.9	50.9	49,900	49,900
484833	1192416	SWRJ2.7	90478107	20,100	20,100	5.28	5.28	0.71	0.71	<0.2	<0.2	35.9	35.9	53	53	27,700	27,700
483446	1192836		90478108	13,000	13,000	1.1	1.1	0.33	0.33	<0.2	<0.2	10.8	10.8	20.2	20.2	13,000	13,000
480522		SWRJ2.8	90478109	9,430	9,430	2.9	2.9	0.3	0.3	<0.2	<0.2	17.9	17.9	11.6	11.6	15,500	15,500
482415		SWRJ3.2	90478110	8,130	8,130	1.1	1.1	0.26	0.26	<0.2	<0.2	18.3	18.3	13.4	13.4	11,500	11,500
484313	1192153		90478111	9,940	9,940	1.4	14	0.21	0.21	<0.2	<0.2	11.4	11.4	11.9	11.9	10,400	10,400
473642	1204021	SWRL2.7	90478112	25,600	25,600	0.5	0.5	0.77	0.77	<0.2	<0.2	71.3	71.3	27.3	27.3	26,200	26,200
473251	1203128	SWRL2.7	90478113	25,700	25,700	7.19	7.19	0.77	0.77	<0.2	<0.2	36.9	36.9	28.7	28.7	25,000	25,000
473740	1203824	SWRL2.7	90478114	29,000	29,000	1.4	1.4	1.14	1.14	<0.2	<0.2	29.3	29.3	14.8	14.8	20,200	20,200
472924	1202000	SWRL2.7	90478115	16,700	16,700	2.25	2.25	0.43	0.43	<0.2	<0.2	20	20	14.7	14.7	19,100	19,100
472943	1202117	SWRL2.6	90478116	20,700	20,700	0.53	0.53	0.58	0.58	<0.2	<0.2	38.4	38,4	16	16	22,900	22,900
470608	1175445	SWRP2.8	90478128	18.900	18.900	4.1	4.1	0.79	0.79	<0.2	<0.2	15.4	15.4	21.9	21.9	30,000	30.000
465848	1174302		90478129	14,800	14.800	3.73	3.73	0.79	0.54	<0.2 <0.2	<0.2	12.6	12.6	16	21.3 16	24,700	24,700
462437	1180414		90478130	23,100	23,100	2.6	2.6	0.84	0.84	<0.2	<0.2	16.1	16.1	18.9	18.9	26,100	26,100
461153	1180928		90478131	15,100	15,100	1.2	1.2	0.58	0.58	<0.2	<0.2	6.1	6.1	11.1	11.1	11,200	11,200
461307		SWRP3.2	90478132	15,400	15,400	1.49	1.49	0.51	0.51	<0.2 <0.2	<0.2	7.6	7.6	12.9	12.9	13,200	13,200
401007	1101020	OTTIC 0.2	3047 0 102	10,400	10,400	1.73	1.40	0.51	4.91	70.2	70.2	7.0	l:W	12.3	12.5	13,200	19,209
470446	1191953	SWRR2.5	90478134	6,140	6,140	1.44	1.44	0.25	0.25	<0.2	<0,2	5	5	9.1	9.1	21,300	21,300
470053	1194611	SWRR2.7	90478135	6,930	6,930	3.65	3.65	0.42	0.42	<0.2	<0.2	6.6	6.6	13.2	13.2	23,500	23,500
464554	1184944	SWRR2.5	90478136	10,400	10,400	2.6	2.6	0.47	0.47	<0.2	<0.2	10.8	10.8	14.6	14.6	17,100	17,100
465250	1194216	SWRR2.5	90478137	8,570	8,570	2.53	2.53	0.28	0,28	<0.2	<0.2	8.8	8.8	12.7	12.7	16,200	16,200
462524	1190452	SWRR2.3	90478138	8,460	8,460	6.12	6.12	0.29	0.29	<0.2	<0.2	9.1	9.1	13.2	13.2	22,200	22,200
454159	1223043	CI 10 3	91238155	40,700	43,800		2.9	1.64	1,335	0.97	0.535	21.2	24.35	17.8	22	50,000	52,850
707 100		CLRG12.2	90478102		70,000	2.9	£.0	1.04	1,000	<0.2	v.əəd	21.2 27.5	Z4.J0,	17.8 26.2	44	50,000 55.700	DZ,GDU

LAT	LON	SITE	NO.	Al		As		Be		6.4		C)		Cu		Fe	
454014	1224057	CL20.3	91238156	22.500	20,150		1.5	1.09	0.75	0.77	0.485	15.6	16.75	12.5	13.95	36,600	33,350
		CLRG22.2	90478103		•	1.5		0.41		0.2		17.9		15.4		30,100	
454050	1224424	CL 30.3	91238157	26,000	22,350		2.8	1.48	1.135	1.3	0.7	29.9	27,35	23.4	23,3	35,700	31,400
		CLRG32.2	90478104	18,700		2.8		0.79		<0.2		24.8		23.2		27,100	•
454653	1223558	CL40.3	91238158	35,900	37,850		5.54	1.3	1.02	0.91	0.505	16.6	18.05	26.7	29.2	37,400	35,700
		CLRG42.2	90478105	39,800		5.54		0.74		<0.2		19.5		31.7		34,000	
454742	1224135	CL50.3	91238159	26,400	30,250		6.89	1.15	1	0.79	0.445	18.9	21.7	12.4	18.15	30,000	35,050
		CLRG52.2	90478106	34,100		6.89		0.85		<0.2		24.5		23.9		40,100	
455548	1224243	CL60.3	91238160	11,300	26,900			0.42	0,305	0.21	0.155	6.25	4.425	21:3	17	13,900	41,650
		CL62.2	91238161	42,500				0.19		<0.2		2.6		12.7		69,400	
455207	1224355	CL70.3	91238162		13,750	2.12	2.12	0.68	0.585	0.39	0.42	9.59	8.44	27.1	25.65	17,700	16,350
		CL72.2	91238163	11,400				0.49		0.45		7.29		24.2		15,000	
453343	1221828	CL80.3A	91238169	16,500	19,354		3.796	0.87	1.03077	1.1	0.95538	21.4	23.1154	20.8	23,3385		26,123
		CL80.3B	91238170					0.77		0.68		19.7		17.3		22,600	
		CL80.3C	91238173					0.93		1.9		21.3		28.2		27,000	
		CL80.3D CL80.3V	91238175 91238164			5.65		0.98 1.05		1.9 1.4		22.6 21.9		30.9 25		28,400 26,100	
		CL80.8V	91238166	15,700		2.82		0.87		0.68		18.4		15.2		21,600	
		CL81.4V	91258511	•		2.70		0.78		0.55		19.2		17.3		21,200	
		CL82.2A	91238170					1.17		0.86		25.8		24.3		27,500	
		CL82.2B	91238172	•				1.19		0.78		28.3		25.7		29,900	
		CL82.2C	91238174	•				1.06		0.87		23.6		25.1		26,800	
		CL82.2D	91238176					1.16		0.42		26		24.9		27,600	
		CL82.2V	91238167	24,900		4.56		1.32		0.63		26.1		26.4		28,800	
		CL83.0V	91238168	22,500		3.25		1.25		0.65		26.2		22.3		27,200	
455053	1223856	CL90.3	91258512	33,300	25,500	6.74	5,195	1.36	1.09	0.7	0.62	22.4	18.75	54	39,25	36,600	29,300
		CL92.2	91258513	17,700		3.65		0.82		0.54		15.1		24.5		22,000	
455036	1223958	CL100.3	91238177	20,900	24,800			1.01	1.11	0.69	0.705	16	18.3	8.62	9,71	26,000	29,300
		CL102.2	91238178	-				1.21		0.72		20.6		10.8		32,600	
454614	1223507	CL110.3	91238179	31,400	31,400	2.85	3.08	1.32	1.36	0.72	0.715	23	23.9667	13.1	14,2333	30,600	32,733
		CL112.2	91238180		*	3.31		1.36		0.71		25.6		15.3		33,500	
		CL312.2.3SS	91258446			2.0		1.4		0.94		23.3	-	14.3		34,100	
454745	1223805	CL120.3	91238181	29.900	33,433	3.42	3,42	1.46	1.79	1.1	1.06	21.4	23.2667	13.7	25	30,300	42,200

LAT	LON	SITE	NO.	Al		As		Be		Cd		Cr		Cu		Fe	
***************************************		CL120.08V	91238193	35,800	•		•	2.34	***	1.2		20.2	***	45.3	•	56,500	**
		CL122.2	91238182	34,600				1.57		0.88		28.2		16		39,800	
454717	1223827	CL130.3	91238183	16,000	24,400			0.95	1.45	0.51	0.805	17	24.9	8.89	12.795	19,900	37,450
		CL132.2	91238184	32,800				1.95		1.1		32.8		16.7		55,000	
453623	1222654	CL140.3	91238185	25,600	26.867	3.89	4.42	1.53	1,63667	0.6	0.83667	19.2	22.0667	22.9	30,9667	34,300	39,567
		CL280.3SS	91238209	25,400		4.95		1.57		1		21.1		56		39,200	***************************************
		CL142.2	91238186					1.81		0.91		25.9		14		45,200	
454222	1223140	CL150.3	91238187	53,500	43,000	2.64	2.995	1.9	1.74333	1.3	1.06	29	26.2333	22.2	20,7	48,800	45,633
		CL282.2SS	91238210	42,500		3.35		1.73		1.2		26		21.9		46,200	
		CL152.2	91238188	33,000				1.6		0.68		23.7		18		41,900	
454503	1223605	CL160.3	91238189	26,000	26,700			1.93	1.94	0.86	0,92	25.9	25.7	9.79	10.695	56,900	54,950
	in the first	CL162.2	91238190	27,400				1.95		0.98		25.5		11.6		53,000	
454552	1224208	CL170.3	91238191	28,800	30,300	3.16	3.67	1.48	1.475	0.82	0.74	19.9	20.95	11.7	11,95	31,300	33,250
		CL172.2	91238192	31,800		4.18		1.47		0.66		22		12.2		35,200	
453449	1221647	CL180.3	91258504	38,500	42,767	2.70	2.91333	1.44	1.48333	0.85	0.97	27.1	28,8333	16.6	17,5667	32,700	35,933
		CL182.2	91258505	45,100		3.14		1.52		1.1		30.5		18.2		37,500	
		CL292.2SS	91258510	44,700		2.90		1.49		0.96		28.9		17.9		37,600	
454854	1223018	CL190.08V	91238193	35,800	48,657		6.034	2.34	2.15571	1.2	1.29429	20.2	23,3714	45.3	51,7143	56,500	55,571
		CL190.3	91238197	49,100		5.56		1.93		1.1		20.7		44		40,400	
		CL190.3V	91238194	50,200				2.12		0.96		18.5		55.6		43,700	
	•	CL191.0V	91238212	51,000		4.09		2.45		1.4		24.8		54.8		59,000	
		CL191.6V	91238195			6.21		2.51		1.4		23.5		52.1		77,600	
		CL192.2	91238198	59,200		7.87		1.76		1.5		29.5		53.6		54,400	
		CL192.2V	91238196	53,000		6.44		1.98		1.5		26.4		56.6		57,400	
454442	1224133	CL200.3A	91238211		30,985	4.33	5.583	1.42	1,48385	×	0.93769	9	21,9154	12.3	15.8354		37,254
		CL200.3B	91258514	•		4.37		1.46		1.2		21.4		14.3		36,500	
		CL200.3C	91238201			4.50		1.29		1.1		18.4		13.6		31,300	
		CL200.3D	91238203	30,100		5.57		1.6		1.1		20.7		14.8		38,600	
		CL200.3V	91258500	28,800				1.49		0.66		20.3		13.8		32,400	
		CL200.8V	91258501	30,400		0.00		1.52		0.88		21		13.6		33,000	
		CL201.8A	91258518	33,000		6.29		1.56		1		23.5		14.1		41,600	
		CL201.8B	91258515	27,600		3.70		1.33		0.85		20.6		11.6		34,100	
		CL201.8C	91238202	30,900		5.51		1.46		0.93		22.1		15.8		38,100	
		CL201.8D CL201.8V	91258517 91258502	35,800 40,000		5.92		1.61		1.1		24.6 12.7		16		41,600	
				19,000		0.24	•	0.9		0.57		12.7	9 4	8:86		21,200	
		CL203.0V	91258503	39,500		8.34		1.7	200000000000000000000000000000000000000	0.85		28.9	000000000000000000000000000000000000000	28.7	00000000000000000000000000000000000000	51,300	

8.9	E(OH)	SITE	NO.	4.1		Als		Be		Cd		Cr		Cu		Fe	
		CL205.1V	91238199	44,300	~	7.30		1.95		0.85		30.2		28.4		51,500	
155307	1223815	CL210.3	91238204	52,900	54.550	3.75	4.115	2.07	1.92	1.1	1,225	23.5	23.825	21	23,825	33.700	42.825
,	1220010	CL212.2	91238205	69,800	******	4.48		2.09		1.5		28.7		24.5		43,500	
453958	1223100		91258506	48,300	48,900	1.60	1.45	1.8	1.8	1.8	1,53	1.1	1.1	5.65	21.5	21.4333	24.6
		CL222.2	91258507	47,200		1.30			1.72	1.72		1.2	1.2		21.6		25.2
453748	1223115	CL230.3	91258508	47,000	50,050	2.00	2,15	1.78	1.87	1.3	1.3	14.1	14.65	21.8	21.2	49,200	50,200
403/40	1223 1 15	CL230.3 CL232.2	91258509	53,100	00,000	2.30	Z:10	1.76	1401	1.3 1.3	1.9	15.2	14.00	20.6	21.2	51,200	00,200
		OLIVAIL	0.1200000	00,100												01,200	
454215	1223453	CL240.3		38,800	41,800		3.01	1.8	1.72333	1.3	1.25	16.6	18,1	19.6	21.5667	52,900	53,933
		CL300.3SS	91258447	37,700				1.52		0.89		17.8		20		52,100	
		CL242.2	91238206	48,900		3.01		1.85		1.2		19.9		25.1		56,800	
454200	1223313	CL250.3	04020007	47 700	42 200	2.70	2.65	1.88	1.956	4.0	1,2	00	72 A	25.7	24.9	E0 000	EG NEN
404200	1223313	CL250.3 CL252.2	91238207 91238208	47,700 43,700	45,700	2.70 2.60	2.00	2.03	1,300	1.2 1.2	1.4	22 24.4	23.2	20.7 24.1	24.3	56,200 59,900	58,050
		OLZJZ.Z	3 1230200	43,700		2.00		2.00		1.4		27.7		44. I		00,000	
453654	1222824	CL260.3	91258516	46,100	48,500	1.90	2	1.85	1.99	1.1	1.1	14.8	16.45	24.1	25.4	56,900	59,850
		CL262.2	91258519	50,900		2.10		2.13		1.1		18.1		26.7		62,800	
		CL270.3RS	91258520	19,200	19,350	2.80	2.75	0.53	0,555	0.55	0.48	24.5	24.45	10	9.855	16,500	16,500
		CL272.2RS	91258521	19,500		2.70		0.58		0.41		24.4		9.71		16,500	
472129	1220717	PSL1A0.5	87278100	20,500	20,500							19	19	21	21	17,300	17,300
				_0,000												,	
472256	1220642	PSL2A0.5	87278101	32,800	32,800			0.7	0.7	<.8	<.8	24	24	15	15		
472317	1220642		87278104	25,900	21,820			0.6	0.53	<.8	0.4	22	22	13	17	16,100	15,660
		PSL3A0.5 PSL5AO.5DUP	87278105	22,800				0.6 0.6		<.8		19 19		18		15,300	
		PSL3A1.0	87278102 87278106	21,800 25,500				0.6 0.6		<.8 <.8		19 26		27 14		17,000 17,200	
		PSL3A4.0	87278107					<.5		<.8		25		13		12,700	
		FGLJA4.U	01210101	13, 100				~. 0		`.0		20		. 13		12,700	
472407	1220657	PSL4A0.5	87278108	17,100	17,100			<.5	<.5	<.8	<.8	16	16	13	13	14,800	14,800
472410	1220657	PSL4B0.5	87278109	15,500	15,233			<.5	0.33333	<.8	2.93333	18	21	12	12	12,900	13,533
		PSL6A0.5	87278111	15,700				0.5		<.8		26		13		14,200	
		PSB8AO.5DUP	87278147	14,500				<.5		8		18		10		13,500	
420000	4000000	DOD446.5	07070445												44	00.400	
472220	1220800	PSB1A0.5	87278112	23,800	23,800			0.7	0.7	<.8	<.8	24	24	14	14	20,100	20,100
472308	1221004	PSB2A0.5	87278113	21,900	22,450			0.7	0.75	<.8	<.8	24	23	13	12.5	17,000	17.000
T. 2000	1007	PSB6AO.5DUP		•	EE, TUV			0.8	wiz	<.8	~.•	22	AW	12	IAIV	17,000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

LAT	LON	SITE	NO.	Al		As		Be		Cd		CI		Cu		Fe	
472404	1220945	PSB3A0.1	87278114	16.500	14,976			<.6	0.35	<.8	<.8	18	22	14	12	15,000	15,300
		PSB3A1.0	87278118	19,200				0.6		<.8		20		11		15,700	
		PSB3A3.0	87278123					<.5		×.8		25		11		15,000	
		PSB3A5.0	87278124					<.5		×.8		25		11		15,500	
		. 0207.0.0		10,000												,	
472405	1220943	PSB3B0.1	87278128	13,200	13,675			<.5	0.3125	<.8	<.8	14	19	10	9	11,800	13,700
		PSB3B1.0	87278129	18,000				0.5		> <.8		21		7		15,500	
		PSB3B2.0	87278130	13,300				<.5		% <.8		20		11		13,300	
		PSB3B4.0	87278131	10,200				<.5		<.8		21		8		14,200	
472406	1220941	PSB3C0.1	87278132	10.900	12,175			<.5	<.5	<.8	<,8	14	20	14	14	11,900	12,950
71 2700	1220071	PSB3C2.0	87278133	14,900	14,114			<.5		<.8		23		9		13,900	
		PSB3C4.0	87278134	_				<.5		<.8		25		22		13,300	
		PSB3C5.0	87278135					<.5		~ <.8		19		10		12,700	
		F3B3C8.0	6/2/6135	10,200				\. 0		```\ .				10		12,700	
472405	1220942	PSB3D1.0	87278136	16,900	16,900			<.5	<.5	<.8	<.8	22	22	10	10	14,900	14,900
472404	1220944	PSB3E1.0	87278139	21,700	21,700			<.6	<.6	<.8	<.8	20	20	12	12	16,800	16,800
472508	1220914	PSB4A0.1	87278140	14,900	19,160			<.5	0.37	>.8	0.4	25	24	14	11	14,000	12,320
		PSB4A0.5	87278141	15,000				<.5		>.8		26		12		14,000	
		PSB4A2.0	87278142	28,300				0.6		<.8		24		8.		11,300	
		PSB7A2.0DUP	87278146	•				0.5		> <.8		20		8		10,300	
		PSB4A4.0	87278143	12,600				<.5		<.8		27		12		12,000	
472653	1221116	PSB5A0.5	87278144	7,390	7,390			<0.5	<0.5	<0.8	<0.8	12	12	4	4	5,920	5,920
472143	1220734	PSSED1A	87278148	13,200	13,200			<.5	<.5	5	5	19	19	14	14	17,900	17,900
	4000740							_	<u>_</u>	_							
472129	1220742	PSSED1B	87278149		11,600			<.5	<.5	<.8 -	<.8	20	19.5	24	18	14,800	16,350
		PSSED1C	87278150	11,400				<.5		<.8		19		12		17,900	
472131	1220725	PSSED2A	87278151	13,300	12,850			<.5	<.5	2	1.2	28	21.5	24	21	17,300	17,100
		PSSED2B	87278152	12,400				<.5		<.8	•	15		18		16,900	
472112	1220742	PSSED3A	87278153	12,600	14,150			<.5	0.375	<.8	0.7	23	22.5	18	25	18,100	19,450
712112	1220142	PSSED3B	87278154		170,100			0.5	9,010		Usf	23 22	ALIU	32	49	20,800	13,700
		LOGENOD	01 ZI 0 104	10,700				U.U						J Z		20,000	
483845	1225008	PS10.3	93088519	24,000	20,800	6.64	5.818	0.71	0.544	0.55	0.424	34.1	35.3	32.1	29.24	28,700	29,040
		PS300.3DUP	93088637	21,000		5.72		0.66		<0.2		31.2		28.8		27,400	
		PS12.2	93088520	21,700		6.29		0.42		0.55		36.3		29.8		27,300	
		PS302.2DUP	93088638	16,700		5.99		0.44		<0.2		33.4		-25.4		25,500	
		PS155	93088521			4.45		0.49		0.82		41.5		30.1		36,300	

201	LON	SITE	NO.	Al		As		Be		Cd		Cr		Cu		Fe	
183355	1225604	PS20.3	93088522	14,600	14,175	2.79	3.735	0.37	0.37	0.37	0.34	19.6	22.625	15.5	14,075	17,700	20,525
		PS270.3DUP	93088631	13,400	•	2.3		0.36		<0.2		17.9		15		15,800	
		PS22.2	93088523	17,300		6		0.38		0.55		30.8		15.5		28,200	
		PS272.2DUP	93088632			3.85		0.23		<0.2		22.2		10.3		20,400	
485910	1223507	PS30.3	93088524	22,900	20,067	4.58	4.25	0.38	0.36667	0.78	0.56667	29.2	31.3	13.6	13.8667	22,500	21,433
		PS32.2	93088525	22,700		4.48		0.39		0.62		38.6		16.6		23,100	
		PS355	93088526	14,600		3.69		0.33		0.3		26.1		11.4		18,700	
481630	1214308	PS40.3V	93088527	20,600	21,936	9.07	9.39786	0.28	0.32	1.1	0.83143		49.1214	39.5	42.8429	36,600	37,757
		PS320.3SS	93088641	19,700		10.2		0.27		0.26		45.1		38.8		33,400	
		PS41.0V	93088528	21,100		8.3		0.32		0.59		46.2		33.5		37,400	
		PS42.2V	93088529	20,300		7.56		0.3		1.4	•	44.6		42.9		32,100	
		PS43.0V	93088530	21,100		7.91		0.33		0.67		47.6		44.6		36,500	
		PS44.9V	93088531	26,200		14.1		0.37		1.1		59.2		51.2		47,400	
		PS40.3A	93088532	21,500		10.5		0.33		0.92		47.7		38.2		36,600	
		PS40.3B	93088533	23,000		9.43		0.33		1		50.6		45.4		38,100	
		PS40.3C	93088534	19,800		8.66		0.28		1		42.8		41.8		35,500	
		PS40.3D	93088535	18,200		8.16		0.27		0.77		40.8		28.5		35,200	
		PS42.2A	93088536	22,300		8.35		0.34		0.65		50.1		48.6		37,900	
		PS42.2B	93088537	25,700		10.8		0.36		0.8		59		59.8		42,600	
		PS42.2C	93088538	25,000		8.77		0.38		0.67		54.2		40.3		40,900	
		PS42.2D	93088539	22,600		9.76		0.32		0.71		52		46.7		38,400	
480938	1224043	PS50.3	93088540	12,000	12,400	2.32	2.215	0.22	0.23	0.37	0.38	21.4	22	12.7	11.235	15,800	16,550
		PS51.5	93088541	12,800		2.11		0.24		0.39		22.6		9.77		17,300	
		7.		,_,_												,.	
480239	1231923	PS60.3	93088542	10,000	10,713	1.18	1,61667	0.24	0,25333	0.28	0.30333	14	16,3667	6.78	8,97333	11.400	14,333
		PS62.2	93088543	12,600		1.11		0.29		0.3		15.5		8.04		12,200	
•		PS655	93088544	9,540		2.56		0.23		0.33		19.6		12.1		19,400	
471643	1220203	PS70.3V	93088545	13,300	11,680	5.57	4.27429	0.38	0.29143	0.47	0.36571	•	18,7429	21.4	16.1071		18,079
		PS71.4V	93088546	15,600		5.82		0.39		0.55		14.4		20.7		25,300	
		PS72.2V	93088547	8,660		2.56		0.24		0.26		16.1		12.6		12,500	
		PS73.0V	93088548	16,300		6.51		0.39		0.49		14.2		19.6		27,600	
		PS73.8V	93088549	16,000		5.68		0.38		0.58		15.9		19.3		24,900	
		PS70.3A	93088550	10,500		3.93		0.19		0.57		20.2		16.7		15,900	
		PS70.3B	93088551	10,600		3.84		0.26		0.41		17.1		12.2		15,300	
		PS70.3C	93088552	10,400		4.44		0.28		0.21		18.9		16.2		16,400	
		PS310.3SS	93088639	10,300		4.54		0.25		<0.2		20.3		17.7		15,900	
•		PS70.3D	93088553	8,860		3.75		0.23		0.27		20	***	10.6		13,200	
.*		PS72.2A	93088554	10,900		3.3		0.27		0.34		23.1		14.4		16,600	
		PS72.2B	93088555	10,100		2.77		0.27		0.29		18.3		14.1		15,300	

LAT	LON	SITE	NO.	Al		As		Be		Cd		Cr		Cu		Fie	
		PS72.2C	93088556	11,700		4.06		0.3		0.48		22.2		16.1		17,500	
		PS72.2D	93088557	10,300		3.07		0.25		<0.2		19.1		13.9		16,000	
475035	1214917	PS80.3	93088558	18,000	21,400	11.3	8.615	0.26	0,33	0.46	0.28	38.9	41.95	18.6	19.5	24,600	25,850
		PS82.2	93088559	24,800		5.93		0.4		<0.2		45		20.4		27,100	
474226	1225456	PS90.3	93088560	28,300	32.300	1.81	1.665	0.44	0.47	<0.2	<0.2	43.9	48.75	49.7	64.55	37,100	40,400
		PS91	93088561	36,300		1.52		0.5		<0.2		53.6		79.4		43,700	
475420	1225412	PS100.3	93088562	13,300	13,850	3.74	2.99	0.23	0.23	<0.2	<0.2	21.3	21.15	8.03	7.59	12,900	13,050
		PS102.2	93088563	14,400		2.24		0.23		<0.2		21		7.15		13,200	
471843	1223157	PS110.3V	93088564	14,800	16,540	11.2	17.1685	0.27	0.26615	0.21	0.45846	19.1	24.3538	20.6	32.0308	10,900	13,354
		PS111.4V	93088565	18,600		11.6		0.32		0.33		25		18.9		13,800	
		PS112.2V	93088566	20,500		2.46		0.29		<0.2		29.6		13.9		16,600	
		PS113.0V	93088567	23,000		9.34		0.29		0.44		30.7		22		18,000	
		PS114.0V	93088568	14,700		5.04		0.26		<0.2		22		16.7		11,700	
-	•	PS110.3A	93088569	8,820		73.3		0.14		2.6		11.8		111		7,400	
		PS110.3B	93088570	17,600		19.3		0.31		0.37		25		23		16,100	
		PS110.3C	93088571	14,400		50.7		0.22		0.82		29.4		101		11,400	
		PS110.3D	93088572	14,000		23.5		0.23		0.59		19		34.7		10,700	
		PS112.2A	93088573	16,800		3.94		0.27		<0.2		23.2		12.6		12,000	
		PS112.2B	93088574	14,600		3.75		0.22		<0.2		21.7		11.1		12,400	
		PS112.2C	93088575	20,400		6.04		0.33		<0.2		29.8		19.1		15,900	
- 144 V		PS112.2D	93088576	16,800		3.02		0.31		<0.2		30.3		11.8		16,700	
472827	1224307	PS120.3	93088577	15,800	16,367	2.52	1.99333	0.27	0.27	<0.2	<0.2	16.2	21.7	6.78	8.84667	13,700	14,300
		PS122.2	93088578	18,800		1.66		0.27		<0.2		24		10.7		16,200	
		PS292.2SS	93088636	14,500		1.8		0.26		<0.2		24.9		9.06		13,000	
471723	1232215	PS130.3	93088579	82,100	84,900	2.2	2.35	0.86	0.875	<0.2	0.19	45.3	47.25	231	243.5	109,000	112,500
		PS132.2	93088580	87,700		2.5		0.89		0.28		49.2		256		116,000	
472232	1225818	PS140.3	93088581	19,900	17,900	2.5	1.8	0.29	0.25667	<0.2	<0,2	23.4	28.2	16.5	19.1667	19,200	18,200
		PS141.5	93088582	21,300		1.5		0.26		<0.2		26.7		20.4		18,800	
		PS1455	93088583	12,500		1.4		0.22		<0.2		34.5		20.6		16,600	
465504	1225420	PS150.3V	93088584	25,500	23,193	3.36	3.81929	0.48	0.41	<0.2	0.1	18.9	18.3429	16.9	18.0429	17,700	17,793
		PS151.2V	93088585	26,900		2.8		0.46		<0.2		17.7		19.5		18,300	
		PS152.2V	93088586	24,400		2.7		0.43		<0.2		19.5		18.7		18,000	
		PS153.0V	93088587	21,300		2.5		0.34		<0.2		18.2		18.8		18,000	
		PS154.3V	93088588	17,300		2.5		0.3		<0.2		15.9		18.6		18,000	
		PS312.2SS	93088640	18,400		2.3		0.4		<0.2		18		47.8		18,200	
		PS150.3A	93088589	24,100		3.18		0.39		<0.2		18.1		17.1		17,900	

LAT	LON	SITE	NO.	Ai		As		Be		Cd		Cr		Cu		Fe	
		PS150.3B	93088590	24,500		4.27		0.43		<0.2		17		16.4		16,900	
		PS150.3C	93088591	23,900		4.28		0.43		<0.2		17.2		16.3		17,200	
		PS150.3D	93088592	23,700		3.7		0.46		<0.2		16		17.6		18,000	
		PS152.2A	93088593	22,800		2.1		0.37		<0.2		20.1		17.7		17,400	
		PS152.2B	93088594	22,200		8.75		0.39		<0.2		19.1		19.7		17,200	
		PS152.2C	93088595	23,300		8.63		0.41		<0.2		22.1		17.6		17,300	
		PS152.2D	93088596	26,400		2.4		0.45		<0.2		19		19.9		19,000	
				100													
180812	1221653	PS160.3	93088597	16,000	17,450	2.3	2.3	0.25	0.27	<0.2	<0.2	18	22.6	10.2	11.85	15,200	15,550
		PS161.2	93088598	18,900		2.3		0.29		<0.2		27.2		13.5		15,900	
71307	1222000	PS170.3	93088599	10.900	10,360	3.25	2.535	0.33	9.305	<0.2	<0.2	14.6	14.25	37.9	29.65	13,700	13,450
		PS172.2	93088600	9,820		1.82		0.28		<0.2		13.9		21.4		13,200	
						*										į	
171055	1241132	PS180.3	93088601	17,900	20,675	2.84	2.86	0.28	0.3225	<0.2	<0.2	43.2	33.225	25	25.3	39,300	34,500
		PS182.2	93088602	27,000		3.04	77	0.39		<0.2		45.2		40.5		45,700	
		PS282.2SS	93088634	117 1		3.89		0.25		<0.2		22.8		13.7		27,800	
		PS1855	93088603	14,400		1.67		0.37		<0.2		21.7		22		25,200	
		. 555												* 		20,200	
74657	1241729	PS190.3	93088604	18,800	20,125	2.54	2.935	0.13	0.29667	<0.2	<0.2	17	21.225	8.43	14.6825	24 400	26,675
7, 4007	1241120	PS192.2	93088605	23,900	EV, IEV	3.64	2.000	0.10	V.EVU	<0.2	~~~	23.4	*1.254	14.6	17.0040	29,300	
		PS1955	93088606	15,200		2.01		0.34		<0.2		16.2		9.64		24,900	
		F3 1300	33000000	15,200		2.U I		U.34		\U.Z		10.2		J.04		24,300	
73919	1222451	PS200.3V	93088607	40 000	40.400	6 00	4.326	0.23	0.24333	<0.2	0.14	16.4	19.92	40.0	40.0404	40 700	11,700
17 33 13	122245 1			12,000	12,462	6.29	4.040	400	V.24330		V.14	8888 - E	15.52	10.2	10.8493		11,700
		PS200.8V	93088608	13,500		2.14		0.26		<0.2		16.7		6.86		11,300	
		PS202.2V	93088609	11,500		1		0.23		<0.2		16.9		8.13		10,200	
		PS203.0V	93088610	100		1.4		0.19		<0.2		18.3		8.46		10,700	
•		PS204.5V	93088611	1.00		1.51		0.24		<0.2		20.1		8.98		11,700	
		PS200.3A	93088612	12,900		13.5		0.27		0.34		24.1		16		12,300	
		PS290.3SS	93088635	13,300		6.38		0.27		0.32		19.3		15.2		11,400	
		PS200.3B	93088613	13,100		10.5		0.25		0.24		20		14.5		11,200	
		PS200.3C	93088614	14,500		7.9		0.29		<0.2		18.3		12.6		11,200	
		PS200.3D	93088615	11,500		4.02		0.23		<0.2		20.1		10.4		10,800	
		PS202.2A	93088616	15,700		2.06		0.29		<0.2		27.4		9.45		13,800	
		PS280.3SS	93088633	11,100		3.11		0.21		<0.2		22.4		15.1		16,000	
		PS202.2B	93088617			1.58		0.24		<0.2		21		8.88		11,500	
		PS202.2C	93088618	12,600		1.4		0.21		<0.2		20.4		8.98		11,900	
		PS202.2D	93088619	13,000		2.1		0.24		<0.2		17.4		9		10,800	
70353	1221824	PS210.3	93088620	25,500	31,800	4.46	2.83	0.57	0,7	<0.2	<0.2	9.97	16,385	11.7	20.3	16,000	20,500
	*	PSWRF2.7	90478097	38,100		1.2		0.83		<0.2		22.8		28.9		25,000	
													***	× • ·			
465501	1223333	PS220.3	93088621	28,700	34,450	2.3	2.145	0.59	0.665	<0.2	<0.2	10	17.55	16.4	20.65	13,300	17,650
٠,		PSWRF2.5	90478098		***************************************	1.99		0.74		<0.2		25.1		24.9		22,000	

LAT	LON	SITE	NO.	Al		As		Be		Cd		CI		Gu		Fe	
465728	1223904	DC230 3	93088622	16 200	22,400	2	1.975	0.36	0,415	<0.2	<0.2	13.3	19.95	10.3	14.3	12,000	16,700
103120	122000	PSWRF2.5	90478099	•	22,700	1.95	1,07.0	0.47	V.7.1V	<0.2		26.6		18.3		21,400	****
		FSVVKF2.9	3U41 0U33	20,000		1.50		U.4 <i>1</i>		~U.Z		20.0		10.3		21,400	
175451	1221040	PS240.3	93088623	20.000	24.800	6.29	5,585	0.45	0.53	0.21	0.155	35.8	47.75	18.7	24.9	23,700	27,750
		PSWRF2.5	90478100	29.600		4.88		0.61		<0.2		59.7		31.1		31,800	
182413	1221025	PS250.3	93088624	13,500	18,750	4.26	4.215	0.15	0.185	<0.2	<0.2	157	235	13.1	19,8	23,000	27,500
7		PSWRF2.7	90478101	24,000		4.17		0.22		<0.2		313		26.5		32,000	
464743	1221631	PSLB10.3	93088625	14,400	13,700	2	2.15	0.37	0.395	<0.2	<0.2	15.4	17.95	21.1	17.6	13,200	15,150
		PSLB12.2	93088626	13,000		2.3		0.42		<0.2		20.5		14.1		17,100	
472742	1221326	PSLB20.3	93088627	33,000	39,300	1.1	1.45	0.54	0.61	<0.2	<0.2	63.2	79.05	71.3	86,65	44,200	52,550
		PSLB22.2	93088628	45,600		1.8		0.68		<0.2		94.9		102		60,900	
	4404040					.							_				
460223	1184019	PS260.3RS	93088629	9,330	8,970	3.79	3.57	0.43	0.435	<0.2	<0.2	9.35	9.11	16.5	16.35	21,900	21,650
		PS262.2RS	93088630	8,610		3.35		0.44		<0.2		8.87		16.2		21,400	
472457	1184356	SB10 3	92268500	9.070	8.934	3.59	4.0275	0.36	0.3775	0.51	0.465	6.87	6,5675	14	14.4	15,700	18,400
1/240/	1107000	SB330.3SS	92268574		0,504	3.15	4.421.4	0.38	0.0110	0.43	0,400	7.45	0.0070	13.1	170,70	16,500	10,700
		SB12.2	92268501			5.13 5.22		0.35		0.43		5.73		15.1		19,400	
•		SB320.3SS	92268573			4.15		0.42		0.55		6.22		15.4		22,000	
				3,								7				,	
473910	1180946	SB20.3	92268502	15,800	15,700	3.92	5,11333	0.61	0.66333	0.46	0.45333	7.47	8.95333	14.9	14.9333	14,600	16,133
		SB340.3SS	92268575	17,100		3.72		0.66		0.38		7.79		14.4		15,400	
•		SB22.2	92268503	14,200		7.70		0.72		0.52	•	11.6		15.5		18,400	
475026	1175046	SB30.3	92268504	13,500	14,675	6.17	7.9475	0.64	0.6675	0.55	0.54	7.48	9.235	12.8	16.025	19,000	20,800
		SB32.2	92268505	14,500		9.87		0.68		0.66		9.93		14.1		22,900	
		SB270.3 SS	92268568	17,600		9.92		0.73		0.59		11		14.8		24,500	
		SB3SSBD	92268506	13,100		5.83		0.62		0.36		8.53		22.4		16,800	
470819	1174318		92268507	13,000	12,850	2.55	2.515	0.52	0.535	0.51	0.645	12.9	13.05	15.2	14.45	16,200	16,100
		SB41.2	92268508	12,700		2.48		0.55		0.78		13.2		13.7		16,000	
						.											
474232	1173037	SB50.3	92268509	13,300	13,650	3.82	4.305	0.64	0.655	0.76	0.685	9.87	10.535	9.82	10.96	27,200	27,000
		SB51.3	92268510	14,000		4.79		0.67		0.61		11.2		12.1		26,800	
480033	1172325	SDEN 3	92268511	12,200	10,623	3.21	3,485	0.54	0.505	0.47	0.3125	10.9	11.6	7.32	7.415	13,200	12,518
+0003	11/2020	SB290.3SS	92268511	12,200 14,500	10,523	3.21 3.03	J.485	0.54 0.62	u.ouo	0.47 0.22	U.J 120	10.9 11.2	11.0	7.32 8.15	1.4:15	13,200 14,300	12,018
		SB62.2	92268512			3.90		0.62 0.48		0.22 0.46		12.1		8.89		13,400	
	•	SB6SS	92268512	6,110		3.80		0.48 0.38		<0.2		12.1		6.89 6.3		9,170	
		~D000	922000 IJ	0, 110				U.JO		~v.2		14.4		T.J		J, 17 U	

AT	LON	SITE	NO.	Al		As		Be		Cd		Cr.		Cit			
481824	1173603	SB70.3	92268514	30,100	20,537	2.10	1,13667	0.95	0.72333	1	0.65333	10.5	10,9767	30.2	29.0333		24,100
		SB71.8	92268515	22,100		0.71		0.88		0.73		14.8		38.6		35,600	
		SB7SS	92268516	9,410		0.60		0.34		0.23		7.63		18.3		14,000	
175949	1181738	SB80.3	92268517	15,500	15,067	5.82	6,45333	0.62	0.58667	0.82	0.67667	11.2	12.0333	11.6	11.4667	13,400	13,967
		SB310.3SS	92268572	16,000	•	5.90		0.56		0.79		10.7		11.8		13,400	
		SB82.2	92268518	13,700		7.64		0.58		0.42		14.2		11		15,100	
485517	1173112	SB90.3	92268519	14,300	12,603	3.10	2.74	0.55	0.47667	0.7	0.62667	11.8	11,0533	15.9	14.1433	20.500	18,400
		SB91.4	92268520	15,300		3.32		0.55		0.69		13.4		17.2		20,300	
		SB9SBD	92268521	8,210		1.80		0.33		0.49		7.96		9.33		14,400	
480433	1171952	SB100.3	92268522	26,600	25,850	5.74	6,41	0.84	0.825	0.61	0.535	11.3	11,85	13.9	13.5	16,500	17,000
		SB102.2	92268523	25,100		7.08		0.81		0.46		12.4		13.1		17,500	·
474434	1175413	SB110.3	92268524	19,100	16,975	5.92	6.9275	0.72	0.6825	0.66	0.57	14.8	13.025	34.2	25,725	23,000	25,300
		SB111.3	92268525	18,800		7.95		0.74		0.57		13.1		18.8		37,800	
		SB350.3SS	92268576	15,900		8.27		0.7		0.65		13.1		35.6		20,200	
		SB11SBD	92268526	14,100		5.57		0.57		0.4		11.1		14.3		20,200	
474018	1174407	SB120.3	92268527	18,700	19,950	3.05	3,645	0.73	0.785	0.45	0.41	14.7	16.95	16.8	17.3	17,900	19,500
		SB122.2	92268528	21,200		4.24		0.84		0.37		19.2		17.8		21,100	
471929	1170403	SB130.3	92268529	24,200	21,275	3.46	3.45	0.88	0.82	0.62	0.4625	19.2	18.775	17.2	16,3	22,300	21,225
		SB300.3SS	92268571	23,900		2.30		88.0		0.41		18.3		16.8		21,800	
		SB132.2	92268530	20,400		4.35		0.85		0.36		22.9		18.1		23,900	
		SB13SBD	92268531	16,600		3.69		0.67		0.46		14.7		13.1		16,900	
472534	1171355	SB140.3	92268532	16,500	15,363	2.10	2.3	0.63	0.62625	0.25	0.34	14	12,3375	14.4	15.8625	16,000	14,663
		SB142.2	92268533	19,900		2.60		0.71		0.36		13.7		17.4		17,600	
		SB140.3V	92268534	17,000		1.70		0.62		0.36		13.6		14.4		15,800	
		SB140.8V	92268535	14,800		2.80		0.66		0.41		12.4		15		15,300	
		SB142.2V	92268536	13,800		2.30		0.62		0.29		10.9		16.5		13,100	
		SB280.3SS	92268569	14,800		2.40		0.66		0.4		11.4		16.8		14,200	
		SB143.7V	92268537	13,300		2.40		0.56		0.34		11.2		16.9		12,900	
	i de la companya di salah di s	SB145.0V	92268538	12,800		2.10		0.55		0.31		11.5		15.5		12,400	
470433	1171952	SB150.3	92268539	15,500	14,550	2.70	3.3	0.74	0.75	0.33	0.36	14.5	16	13.5	13,35	16,300	17,050
		SB152.2	92268540	13,600		3.90		0.76		0.39		17.5		13.2		17,800	
472343	1172004	SB160.3	92268541	21,200	23,650	2.70	2.75	0.78	0.875	0.29	0.395	20.2	20.25	17.7	18.25	23,300	24,750
		SB162.2	92268542	26,100		2.80		0.97		0.5		20.3	•	18.8		26,200	
474257	1174500	SB170.3	92268543	17,100	16,500	6.66	8.53	0.65	0.67	0.39	0.37	12.2	12.7	17.8	17,3	20,200	21,100

4.1	LON	SITE	NO.	Ali		As		Be		Cd		Cr		Cu		Fe	
••••••		SB172.2	92268544	15,900		10.40		0.69		0.35		13.2		16.8		22,000	
	4450000	074000														4	
174346	1170832	•	92268545	20,100	17,000	6.57	8.635	0.64	0.605	0.41	0.4	9.18	9.94	11.8	11.85	17,000	18,150
		SB182.2	92268546	13,900		10.70		0.57		0.39		10.7		11.9		19,300	
175233	1173614	SB190.3V	92268547	16,900	13,235	8.16	10,3257	0.68	0.63643	N 3	0.33857	44 2	11.7886	11.7	13,3071	17,600	16,736
77 0200	1170014	SB191.2V	92268548	15,700	19,209	10.30	10,5201	0.67	0.02045	0.5 0.51	0.20007	11.8	11.1.000	12.5	19,501 1	18,100	10,100
		SB192.2V	92268549	11,500		11.90		0.57		0.42		12.9		13		17,800	
		SB193.6V	92268550	11,700		16.60		0.61		0.34		14.6		17.2		19,200	
		SB194.4V	92268551			14.20		0.63		0.44		13.5		15.9		19,100	
		SB190.3A	92268552	16,700		6.89		0.68		0.37		11.6		12.4		18,100	
		SB192.2A	92268553	18,400		9.02		0.74		0.83		12.4		13.8		19,200	
		SB190.3B	92268554	14,600		7.89		0.69		<0.3		11		13.5		15,800	
		SB192.2B	92268555	7,880		10.10		0.5		<0.3		10.5		12.1		13,200	
		SB190.3C	92268556	14,400		8.16		0.71		<0.3		11.1		12.9		15,800	
		SB192.2C	92268557	12,400		18.20		0.66		0.32		13.6		17.2		17,800	
		SB190.3D	92268558	13,900		7.07		0.66		0.46		10.3		10.6		14,700	
		SB192.2D	92268559	8,990		12.40		0.51		<0.3		11.6		10.5		14,400	
		SB19.SS	92268560	9,020		3.67		0.6		<0.3		8.94		13		13,500	
74232	1171937	SB200.3	92268561	17,100	19,450	2.70	2,55	0.79	0.82	0.3	0.375	7.62	6.31	6.86	5.415	20,900	24,650
		SB202.2	92268562			2.40		0.85		0.45		5		3.97		28,400	
•								8									
173743	1171000	SB210.3	92268563	11,900	12,650	6.62	8.01	0.58	0,54	0.33	0.215	10.9	11.65	11.4	13	21,200	22,300
		SBRU2.3	90478140	13,400		9.4		0.5		<0.2		12.4		14.6		23,400	
174313	1173053	SB220 3	92268564	19,100	19,850	4.72	5.26	0.83	0.72	0.33	0.215	12.7	14.4	16.4	19,95	18,700	20,000
77-70-10	1110090	SBRU2.5	90478141		10,000	5.8	W-LV	0.61	Wil &	<0.2	0.2.10	16.1	190	23.5	13,33	21,300	20,000
		051102.0	00-7,01-7	20,000		. 		0.01		~		10.1		20.0		21,000	
175037	1175147	SB230.3	92268565	12,000	14,150	4.29	4.995	0.62	0.55	0.3	0.2	10.8	13.25	11.1	14.45	13,900	17.550
		SBRU2.8	90478142			5.7		0.48		<0.2		15.7		17.8	••••	21,200	
				,				*		*						,	
175002	1175805	SB240.3	92268566	10,800	12,050	8.04	8.42	0.51	0.495	<0.3	0.125	10	11.45	12	13.05	16,200	18,150
		SBRU2.6	90478143			8.8		0.48		<0.2		12.9		14.1		20,100	•
175232	1180911	SB250.3	92268567	10,800	12,500	5.55	5.55	0.51	0.515	<0.3	0.125	10.6	12.85	10.9	12.95	14,100	16,600
		SBRU2.6	90478144	14,200				0.52		<0.2		15.1		15		19,100	
175453	1172838	SB380.3	92268577	17,400	15,000	4.75	5.415	0.62	0.58	0.27	0.185	10.9	10.65	11	10.8	14,800	14,300
		SB382.2	92268578	12,600		6.08		0.54		<0.2		10.4		10.6		13,800	
75349	1171054		92268579	14,400	13,100	1.40	1.45	0.94	0.89	0.26	0.18	4.5	4,5	3.9	4.045	10,300	9,670
		SB391.5	92268580	11,800		1.50		0.84		<0.2		4.5	get.	4.19		9,040	

LAT	LON	SITE	NO.	Al		As		Be		Cd		Cr		Cu		Fe	
463437	1205022	YB10.3	91258554	13,500	13,500	0.9	0.89	1.15	1.15	0.46	0.46	13.3	13.3	13.3	13.3	32,600	32,600
463222	1202650	YB20.3	91258556	15,300	15,300	2.5	2.5	0.82	0.82	0.61	0.61	15	15	19.6	19.6	27,800	27,800
463153	1203223	YB30.3	91258558	19,700	19,700	1.8	1.8	0.95	0.95	0.72	0.72	14.3	14.3	17.7	17.7	29,000	29,000
			13.374	1 V34													
462623	1195653		91258559	19,000	19,300	2.6	2.995	0.88	0.905	0.23	0,405	17	18.5	17.9	18.75	27,300	28,300
		YB42.2	91258560	19,600		3.4		0.93		0.58		20		19.6		29,300	
461355	1192417	YB50.3A	91258566	13,600	14,886	5.1	7.62571	0.84	0.92071	0.71	0.62929	12	13.1571	18.2	19,6357	25,100	28,643
		YB50.3B	91258568	12,500		3.5		0.77		0.52		11.4		12.9		23,200	
		YB50.3C	91258537	15,800		9.1		0.93		0.44		11.5		20.7		28,100	
		YB50.3D	91258539	15,200		6.5		0.91		0.45		12.2		20.7		29,900	
	v	YB50.3V	91258574	14,200		4.6		0.82		0.44		12.7		18.4		25,400	
		YB340.3SS	91258582	13,700		4.4		0.81		0.76		13.1		17.7		25,100	
		YB50.7V	91258575	16,100		5.1		0.89		0.58		13.4		19.9		28,200	
		YB51.3V	91258576	17,100		7.8		0.98		0.75		16.1		24.4		29,800	
		YB52.2A	91258567	15,700		10.9		1.05		1.1		13.3		21		34,300	
		YB52.2B	91258564	13,400		5.4		0.84		0.67		14.2		17.3		26,500	
		YB52.2C	91258538	14,100		11.5		1.07		0.52		12.3		20.1		34,000	
		YB52.2D	91258540	14,000		9.9		1.03		0.73		11.6		19.5		32,600	
		YB52.2V	91258577	16,000		11.2		0.94		0.57		13.9		23		27,600	
		YB53.2V	91258565	17,000		11.6		1.01		0.57		16.5		21.1		31,200	
461445	1200151	YB60.3	91258562	23,000	27,800	5.4	4.82	1.05	1.15667	0.49	0.66	29.3	31.6	23	27.0667	35,600	39,600
		YB332.2SS	91258569	26,000		5.4		1.09		0.58		31.8		23.6		37,400	
		YB62.2	91258563	34,400		3.7		1.33		0.91		33.7		34.6		45,800	
460709	1204921	YB70.3	91258421	47,100	56,550			2.25	2.79	0.95	1.275	6.54	7.67	20.8	24.6	42,800	53,800
		YB72.2	91258422	66,000				3.33		1.6		8.8		28.4		64,800	
460959	1203706	YB80.3	91258423	23,000	26,667			1.13	1.31	0.85	0.67667	14.9	18.6333	17.9	20,1333	28,800	33,567
		YB362.2	91258429	23,100				1.13		0.58		16		18		29,100	
		YB81.8	91258424	33,900				1.67		0.6		25		24.5		42,800	
461920	1202619	YB90.3A	91258571	20,900	21,914	2.4	2.43	1.04	1.04429	0.62	0.66571	10.7	12.0029	21	18,6143	30,700	30,936
		YB90.3B	91258573	23,100		1.4		1.22		0.57		12.4		20.1		34,000	
		YB90.3C	91258578			1.7		1.26		0.8		12.6		17.2		34,900	
		YB342.2SS	91258583	23,500		1.8		1.26		1.4		11.2		17.6		34,900	
		YB90.3D	91258581	24,700		2.2		1.2		0.94		12		18.2		36,900	
		YB90.3V	91258417			# 		0.95		0.35		9.98		18.9		27,600	
		YB90.7V	91258418	12,400				0.58		0.6		3.6	y*	13.2		14,900	
		YB92.2A	91258572	27,200		3.2		1.18		0.8		16		17.9		36,500	
		YB92.2B	91258580			3.4		0.76		0.5		8.5		11.9		20,900	

LAT	LON	SITE	NO.	Ai		As		Be		Cd		Cr		Cu		Fe	
************		YB92.2C	91258579	23,900	•	2.4	***	0.97		0.49		12.9		17		31,100	
		YB92.2D	91258541	20,500		2.9		0.94		0.43		9.46		15.5		27,800	
		YB92.2V	91258419	21,100				0.9		<0.2		11		16.3		26,100	
		YB93.5V	91258420	26,600				1.18		1		18.4		31.5		36,200	
		YB95.0V	91258570	22,400		2.9		1.18		0.72		19.3		24.3		40,600	
400007	4000707	VD400.0	04050540	00 000		. 4		0.00	4 006	0.46	n. 40	45 0	40.7	22.0	98.4E	24 200	22 400
462827	1202727	YB100.3	91258542		21,950	3.1	3.475	0.96	1.085	0.46	0.63	15.8	16.7	22.9	25.15	31,200	33,100
		YB102.2	91258543	23,700		3.9		1.21		0.8		17.6		27.4		35,000	
464415	1203715	YB110.3	91258544	21,000	23,000	1.5	1,5	0.69	0.78	0.37	0.48333	11.4	11,7333	17.2	27.0333	20,900	21,633
- 46.		YB360.3SS	91258412	24,200				0.85		0.35		11.5		19.7		22,000	
		YB112.2	91258411	23,800				0.8		0.73		12.3		44.2		22,000	
471215	1205848	YB12.2	91258555	17.100	32,579	0.6	3,858	1.4	1.07571	0.56	0.50071	14	46.0286	14	18.55	39,800	27,071
		YB120.3A	91258430	31,600		4.1		0.96		0.22	•	36.9		18.1		23,700	****
		YB120.3B	91258432			4.1		0.9		0.43		36.5		15.8		21,900	
		YB120.3C	91258413			3.6		0.78		0.44		29.6		16.7		18,800	
	•	YB120.3D	91258415			4.5		0.95		0.42		33.9		18.9		22,800	
		YB120.3V	91258425					1.09		0.55		33		20.2		22,300	
		YB120.7V	91258426	35,900				1.15		0.72		38.4		19.5		25,700	
		YB121.0V	91258427	40,300				1.23		0.83		46		21.6		26,700	
		YB122.2A	91258431	•		4.6		1.06		0.3		53.1		17.3		28,100	
		YB122.2B	91258433			4.0		1.01		0.46		46.3		16.7		26,100	
		YB122.2C	91258414	34.300		4.4		1.06		<0.2		76.8		18.8		29,400	
		YB122.2D	91258416	•		4.6		1.12		0.68		47		19		28,000	
		YB122.2V	91258428					1.31		0.74		48.9		20.5		28,500	
		YB123.2V	91258526			4.1		1.04		0.56		104		22.6		37,200	
471015	1205856	VB130 3	91258404	28,100	29,600		2.9	0.98	1.03667	0.77	0.8	27.4	31,4667	16.4	21.0333	27,100	30,600
47 10 13	1200000	YB350.3SS	91258408		20,000	2.9	Eng C	0.89	1.00001	0.86	V.0	27.1	*****	16.9	LIMOU	27,100	00,000
	•	YB132.2	91258405					1.24		0.77		39.9		29.8		37,500	
				3.,000												,	
470505	1202520	YB140.2	91258524	24,400	20,750	1.3	1,34286		1.4175	0.59	0.8425	19.6	16,35	18.7	17.1625		39,663
		YB140.2V	91258545	20,800		1.7		1.46		1.3		17.9		18.8		40,500	
		YB140.6V	91258546	18,400		1.5		1.38		0.72		15.4		17.1		38,000	
		YB330.3SS	91258551	18,400		1.3		1.42		0.97		14.8		16.4		35,900	
		YB141.0	91258523	25,400				1.52		0.72		19.5		18.2		42,300	
		YB141.0V	91258547	20,300		1.3		1.38		0.81		15.1		16.3		39,800	
		YB141.7V	91258548	20,400		1.2		1.59		0.85		15.8		17		43,800	
		YB142.5V	91258525	17,900		1.1		1.39		0.78		12.7		14.8		41,900	
465850	1204027	YB150.3	91258549	25,100	27,200	1.9	1.8	1.21	1.245	0.64	0.87	21.9	22	17.2	18.1	30,400	31,650
		YB151.6	91258550	•		1.7	1000	1.28		1.1	ViWi	22.1	***	17 .2 19	1911	32,900	~ 1,777
			J 120000	20,000		***************************************		1.40				44. I	•	10		J2,3UU	

.AT	LON	SITE	NO.	Al		As		Be		Cd		Cr		Cu		Fe	
171047	1204419	YB160.3	91258406	24,200	23,233	3.12	2.5	0.98	0.98	0.51	0.4	28.9	30,3	18.5	17.1333	20,400	22,033
		YB352.2SS	91258409	19,800		2.1		0.88		<0.2		27.8		16.1		20,000	
		YB162.2	91258407	25,700		2.9		1.08		0.59		34.2		16.8		25,700	
71407	1204807	YB170.3	91258552	14,800	16,450	2.5	2.815	0.72	0.72	0.58	0.515	34.3	37.85	11.3	12.4	20,000	21,350
	• • .	YB172.1	91258553	18,100		3.1		0.72		0.45		41.4		13.5		22,700	
		42.															
163713	1211038		91258528	19,600	20,850	2.0	2.3	0.69	0.77	0.49	0.525	9.27	12.135	13.2	17.75	14,800	17,200
		YB182.2	91258527	22,100		2.6		0.85		0.56		15		22.3		19,600	
100444	4005044	V-100 0		22.222								40.4					
162441	1205344		91258403	34,600	41,400		1.83333	1.49	1.97	1.12	1.32857	88	18.2286	19.6	22.8	39,700	58,800
		YB190.3V	91258529	37,900		1.4		1.59		1.2 1		14 15.9		22.9		46,800	
		YB190.7V YB191.2V	91258530 91258400	39,600 43,700		1.8 1.8		1.84 2.27		1.6		22.2		20.7 23.1		52,800 69,400	
		YB192.2	91258410	38.000		1.7		2.2 <i>1</i> 1.8		0.98		18.2		23. i 21.8		68,400 48,300	
		YB192.2V	91258401	50,500		2.2		2.49		0.56 1.9		23.1		21.0 24.9		48,500 80,500	
		YB194.0V	91258402	100		2.1		2.31		1.5		20.8		26.6		75,100	
	•	1,5104.00	0 1200402	40,000		~·'		2.01				20.0		20.0		70,100	
470048	1210530	YB200.3	91258533	10,900	10,850	2.1	1.95	0.45	0.39	0.36	0.35	2.41	2.555	4.31	4.125	5,600	5,025
		YB201.0	91258534	10 15 15 per 1 1 1 1		1.8		0.33		0.34		2.7		3.94		4,450	
						₩ <u>.</u>						₩				.,	
472528	1203915	YB210.3	91258535	23,400	24,550	38.1	28.6	0.79	0.83	0.5	0.665	128	110.3	43.7	50.15	36,400	35,450
		YB210.8	91258536	25,700		19.1		0.87		0.83		92.6		56.6		34,500	
	, , , , , , , , , , , , , , , , , , ,																
472417	1212858	YB22.2	91258557	17,600	20,133	2.6	2.91667	0.94	0.7	0.36	0.37	21.1	12.96	19.4	15.2333	29,800	20,733
		YB220.3	91258531	15,700		3.8		0.47		0.34		6.88		15.6		13,300	
		YB222.0	91258532	27,100		2.3		0.69		0.41		10.9		10.7		19,100	
		• • • • • • •															
461432	1191954		91258439	12,400	11,700	3.6	3.685	0.77	0.65	0.27	0.185	11.4	11.6	14.6	16.2	23,500	22,750
		YBRO2.5	90478123	11,000		3.8		0.53		<0.2		11.8		17.8		22,000	
16.82.12	130 8062		3 SUM (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
161727	1194425		91258440		14,600	5.2	5.33	0.89	0.73	0.45	0.275	17	17.15	21.8	20.5	25,300	23,150
		YBRO2.5	90478124	13,700		5.5		0.57		<0.2		17.3		19.2		21,000	
	4004500											.					
462522	1204526		91258441	10.00	16,900	2.5	3.05	0.99	0.805	0.54	0.32	15.8	15.85	18.7	18.55	26,400	24,550
		YBRO2.5	90478125	14,700		3.6		0.62		<0.2		15.9		18.4		22,700	
104049	4000027	VD000 a	04050440	40.000	4.604-4							4				00 400	
161843	1202937		91258442		15,450	4.4	4.695	1.11	0.89	0.56	0.33	15.7	14.3	21.1	21.3	33,100	30,350
		YBRO2.3	90478126	12,100		5		0.67		<0.2		12.9		21.5		27,600	
464114	1203046	YB270.3	91258443	19,200	15,600	3.5	3,365	0.86	0.635	0.63	0.365	16.4	15.55	40.0	26.4	20 000	26.900
7J7 1 14	12003 10	YBRO2.2	90478127	12,000	12,900	3.2	0.000	0.86 0.41	V.030	80000	0.303	W	10.50	19.9 30.3	20.1	29,900	∠ 0,500
		I DROZ.Z	JU41 0 121	12,000		J.L		V.4 I		<0.2		14.7		20.3		23,900	
70433		YB280.3	91258435	00 000	25,300	1.0	0.96	1.36	1.38	0.8	0.45	12.1	16.8	16.1	18.85	37,700	44,700

4.1	LON	SITE	NO.	Ai		4.6		Be		Cit		C)		Cu		Fe	
		YBRM2.5	90478118	28,400		0.97		1.4		<0.2		21.5		21.6	•	51,700	
65846	1203919	VR290 3	91258436	24 300	24,900	1.4	1.245	1.34	1.21	0.64	0.37	39.6	38.45	20.1	23.5	40,200	41,700
70040	12000 10	YBRM2.6	90478119		24,000	1.09	*****	1.08	PARK E	<0.2	••••	37.3		26.9	20.0	43,200	
65114	1201724		91258437		18,750	2.2	2.58	0.96	0.815	0.21	0.155	15.9	16.5	17.1	21.5	25,200	23,900
		YBRM2.6	90478120	16,000		2.96		0.67		<0.2		17.1		25.9		22,600	
65112	1201624	YB310.3	91258438	14.500	17,000	1.3	1.65	0.94	0.89	0.42	0.26	11.3	13.15	12.8	16.4	27,500	30,050
		YBRM2.6	90478121		•	2.0		0.84		<0.2		15		20		32,600	
70058	1203855	YB32.2 YB320.3	91258561		24,267	3.4	2.515	1.44	1.04667		0.35	18.6 19	21.2333		22,3333		16,369
		YBRM2.3	91258434 90478122			1.6 2.0		0.92 0.78		0.2 <0.2		26.1		15.5 20.7		21,800 26,900	
				_0,000												20,000	
		YB370.3RS	91258444		18,800	2.7	2.7	0.54	0.555	0.39	0.4	25.1	25.85	9.3	9.545	16,000	16,450
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		YB372.2RS	91258445	19,500		2.7		0.57		0.41		26.6		9.79		16,900	
				age & St													
					•												
•														,			
														<u>ر</u>			
																<u> </u>	**************

LAT	LON	SITE	NO.	Pb		Mn		Hg		Ni		Zn		
463937	1234536	SWRA2.5	90478080	12	12	537	537	0.119	0.119	26.8	*************	63.1	63.1	
465952	1233542	SWRA2.5	90478081	9.7	9.7	303	303	0.093	0.093	19.6	19.6	53.8	53.8	
463110	1233352	SWRA2.5	90478082	4	4	930	930	0.055	0.055	63.2	63.2	B6	86	
464120	1225527	SWRA2.3	90478083	4	4	277	277	0.042	0.042	11.9	11.9	44.5	44.5	
463337	1230623	SWRA2.3	90478084	10	10	633	633	0.061	0.061	14.2	14.2	63	63	
465553	1240957	SWRC2.5	90478086	3.2	3.2	159	159	0.009	0.009	10.3	10.3	24.4	24.4	
465125	1240634	SWRC2.6	90478087	2.3	2.3	149	149	0.01	0.01	10	10	27.5	27.5	
463628	1240232	SWRC2.6	90478088	2.1	2.1	107	107	0.01.1	0.011	9	9	21.1	21.1	
462602	1240317	SWRC2.5	90478089	3.1	3.1	112	112	0.011	0.011	8.7	8.7	24.6	24.6	
462116	1240157	SWRC2.5	90478090	2.3	2.3	78	78	0.009	0.009	7.6	7.6	24.1	24.1	
483954	1222930	SWRD2.3	90478092	5.2	5.2	229	229	0.021	0.021	22.3	22.3	36.7	36.7	
483908	1222926	SWRD2.3	90478093	6.1	6.1	197	197	0.038	0.038	31.3	31.3	42.4	42.4	
484152	1222929	SWRD2.6	90478094	3.8	3.8	231	231	0.031	0.031	19.1	19,1	45	45	
484809	1221033	SWRD2.7	90478095	4.7	4.7	366	366	0.045	0.045	39.8	39.8	54	54	
484332	1220527	SWRD2.5	90478096	12	12	631	631	0.185	0.185	91.1	91.1	116	116	
484833	1192416	SWRJ2.7	90478107	9.9	9.9	571	571	0.025	0.025	24.6	24.6	77.9	77.9	
483446	1192836	SWRJ3	90478108	5.4	5,4	345	345	0.01	0.01	7.8	7.8	39.4	39.4	
480522	1194153	SWRJ2.8	90478109	6.6	6,6	256	256	0.004	0.004	12.3	12.3	39.6	39.6	•
482415	1192705	SWRJ3.2	90478110	4.8	4.8	234	234	0.007	0.007	17	17	31.4	31.4	
484313	1192153	SWRJ3	90478111	4.2	4.2	233	233	0.013	0.013	9.5	9.5	30.7	30.7	
473642	1204021	SWRL2.7	90478112	5	5	363	363	0.005	0.005	34.1	500000000000000000000000000000000000000	82.3	82.3	•
473251	1203128	SWRL2.7	90478113	9.5	9.5	430	430	0.015	0.015	20.8	20.8	75.4	75.4	
473740	1203824	SWRL2.7	90478114	8.8	8.8	294	294	0.01	0.01	16.7	16.7	58.3	58.3	
472924	1202000	SWRL2.7	90478115	6.4	6.4	340	340	0.013	0.013	12.2	12.2	41	41	
472943	1202117	SWRL2.6	90478116	5.9	5,9	372	372	0.004	0.004	19.4	19.4	56.4	56.4	
470608	1175445	SWRP2.8	90478128	11.7	11.7	652	652	0.021	0.021	16.5	200000000000000000000000000000000000000	49.4	49,4	
465848	1174302	SWRP3	90478129	8	8	516	516	0.008	0.008	10.7	200000000000000000000000000000000000000	43.8	43.8	
462437	1180414	SWRP3	90478130	10.4	10.4	523	523	0.004	0.004	14	300000000000000000000000000000000000000	47.1	47.1	
461153	1180928	SWRP3	90478131		6.7	252	252	0.011	0.011	7.7	300000000000000000000000000000000000000	26.3	26.3	e e
461307	1181528	SWRP3.2	90478132	5.8	5.8	279	279	0.004	0.004	7.1	7.1	31.5	31.5	
				a i								1		
470446	1191953	SWRR2.5	90478134		4.2	245	245	0.004	0.004	6.4	380000000000000000000000000000000000000	37.4	37.4	
470053	1194611	SWRR2.7	90478135	8	8	378	378	0.004	0.004	9.2		42.2	42.2	
464554	1184944	SWRR2.5	90478136		6.8	325	325	0.004	0.004	11.2	300000000000000000000000000000000000000	32.4	32.4	
465250	1194216	SWRR2.5	90478137	6	6	268	268	0.004	0.004	9.7		30.3	30.3	
462524	1190452	SWRR2.3	90478138	5.3	5.3	377	377	0.01	0.01	11.7	11.7	39.7 🏸	39.7	
												**		
454159	1223043	CL10.3	91238155	6.7	8.3	984	904,5	0.022	0.0205	17.7	100000000000000000000000000000000000000	B5.5	83.8	
7		CLRG12.2	90478102	9.9		825		0.019		20.4		B2.1		

LAT	LON	SITE	NO.	Pb		Mn	-	Hg		Ni		Zn		
454014	1224057	CL20.3	91238156	E 0	5,45	857	667.5	0.024	0.021	19.2	19.3	65.2	58	
101011	1224001	CLRG22.2	90478103		V.740	478	337.3	0.018	V.V	19.4		50.8	-	
454050	1224424	CL30.3	91238157	14	11.3	837	665.5	0.038	0.0315	25.1	22.85	123	93	
10.000		CLRG32.2	90478104		-	494		0.025		20.6		63		
454653	1223558	CL40.3	91238158	6.7	7.7	1010	848	0.043	0.0425	12	12.65	78.9	77.1	
		CLRG42.2	90478105	8.7		686		0.042		13.3		75.3		
454742	1224135	CL50.3		12	12.5	1210	927	0.041	0.0455	14.9	16,2	95	84,5	• •
tratio.		CLRG52.2	90478106	13		644		0.05		17.5		74		
455548	1224243	CL60.3	91238160	<2	<2	230	150	0.025	0.01375	8	7	29.7	21.4	
		CL62.2	91238161	<2		70		<0.005		6		13.1		
455207	1224355	CL70.3	91238162		4.65	256	231.5	0.033	0.031	10.1	9.35	40.1	33.95	
		CL72.2	91238163	3.3		207		0.029		8.6		27.8		
453343	1221828	CL80.3A		13	12,04385	412	420.7692	0.041	0.047931	19.5	20,26923	88	89.51538	
		CL80.3B CL80.3C	91238170 91238173	10 30		344 485		0.029 0.03		17.5 18.3		70.1 193		
		CL80.3D	91238175			521		0.04		20	4	162		
		CL80.3V CL80.8V	91238164 91238166	17.8 5.8		450 306		0.04 0.024		20.7 17		138 54.1		
		CL81.4V	91258511			307		0.025		17.6		51.5		•
		CL82.2A CL82.2B	91238170 91238172			452 463		0.0706 0.0749		22 22.9		64.4 66.7		
		CL82.2C CL82.2D	91238174			414		0.07		20.9		74.8		
		CL82.2D CL82.2V	91238176 91238167	8.3 10.5		483 425		0.08 0.0696		22.3 22.8		68.1 66.6		
		CL83.0V	91238168	7.47		408		0.029		22		66.4		-
455053	1223856	CL90.3	91258512	14	9.8	726	509.5	0.038	0.0285	15.6	12.76	84.7	66.15	
		CL92.2	91258513	5.6		293		0.019		9.9		47.6		
455036	1223958	CL100.3	91238177		7.3	1180	926.5	0.03	0.035	10.6	12.6	67.4	69.45	
		CL102.2	91238178	6.6		673		0.04		14.6		71.5		
454614	1223507	CL110.3	91238179	10.4	9.185	1100	829.6667	0.04	0.03	17.2	16.26667	•	67.86667	
		CL112.2 CL312.2.3SS	91238180 91258446	7.97 3.6		562 827		0.02 0.026		16.5 15.1		64 57.2		
												ب		
454745	1223805	CL120.3	91238181	14	12.23333	1688	1836	0.04	0.026667	16.5	14,3	80.1	76,4	

241	LON	SITE	NO.	Pb		Me		Hg		N.		20			
•••••	•	CL120.08V	91238193	13	***	2610		0.02		10.4		82.2			
		CL122.2	91238182	9.7		1210		0.02		16		66.9		•	
54717	1223827	CL130.3	91238183	9.5	8.65	365	807.5	0.03	0.02	7.9	12	55.3	64.3		
		CL132.2	91238184	7.8		1250		0.01		16.1		73.3			
453623	1222654	CL140.3	91238185		29.6	536	659	0.04	0.021667	12.4	13.76667	79.6	74.9		
		CL280.3SS	91238209			529		0.005		13.4		78.1			
		CL142.2	91238186	10		912		0.02		15.5		67			
	4000440														
454222	1223140	CL150.3	91238187		8.733333	434	464.6667	0.03	0.033333	21	15,96667	73.9	67.1		
	· · · · · · · · · · · · · · · · · · ·	CL282.2SS	91238210			420		0.04		14.3		63.9			
		CL152.2	91238188	1.1		540		0.03		12.6		63.5			
454503	1223605	CL160.3	91238189	6.9	5.5	1030	1110	0.05	0.04	13	13,55	58.2	56,85		
TJ40UJ	1223003	CL160.3 CL162.2	91238189		u.u	1190	1:1:10	0.03	u.va	14.1	IV _A VV	55.5	uu,uu		
		VL IUZ.Z	3 1230 130	7.2		1 100		V.00		17.1		JU.U			
454552	1224208	CL170.3	91238191	16.3	13.7	2140	1525.5	0.03	0.02	117	66.75	102	94.75		
		CL172.2	91238192		•••	911		0.01		16.5		87.5			
453449	1221647	CL180.3	91258504	13.9	10.73333	1770	1483.333	0.039	0.031	17.6	18.83333	92.1	89.33333		
		CL182.2	91258505	11		1370		0.027		19		89			
		CL292.2SS	91258510	7.3		1310		0.027		19.9		86.9			
454854	1223018	CL190.08V	91238193	13	10.77143	2610	1960.857	0.02	0.02	10.4	14.32857	82.2	71.38571	•	
		CL190.3	91238197	14.2		1100		0.02		15.6		79.1			
		CL190.3V	91238194	14.1		1870		0.03		12		78			
		CL191.0V	91238212	9.2		1850		0.035		13.4		70.4			
		CL191.6V	91238195			4060		0.01		14.3		69.7			
		CL192.2	91238198			616		0.005		20.4		58.8		•	
		CL192.2V	91238196	7.7		1620		0.02		14.2		61.5			
	4004400	01 000 04	04000044	44		4040				40.0					
454442	1224133	CL200.3A	91238211		11.09	1610	1192,154		0.025846	16.3	16.46154	35	84.68462		
		CL200.3B	91258514			1430		0.033		16.5		98.1			
		CL200.3C CL200.3D	91238201			1670 4720		0.03		15.7		89.7			
		CL200.3D CL200.3V	91238203 91258500			1730 1430		0.02 0.033		16.6 15.6		84.5 83.3			
		CL200.3V CL200.8V	91258500			1330		0.033 0.024		15.6 15		89 89			
		CL200.8V CL201.8A	91258518			1240		0.024		16.3		83.8			
		CL201.8A	91258515			1300		0.026		14.1		88.9			
		CL201.8C	91238202			1040		0.016		17.4		83.5			
		CL201.8D	91258517			743		0.025		16.7		87.4			
		CL201.8D CL201.8V	91258502			387		0.025		9.9		46.3			
	1.45	CL201.6V CL203.0V	91258502			804		0.028 0.034		3.5 22.4		46.3 91.3			

LAT	LON	SITE	NO.	Pb		Ma				Ni		7.1		
****************	•••••	CL205.1V	91238199	12.4	***	784	***	0.02	***	21.5	****	85		
155307	1223815	CL210.3	91238204	16	15.975	1640	1077.25	0.02	0.0285	15	18.9	76.1	79.9	
	•	CL212.2	91238205	14		639		0.03		18.2		60.1		
153958	1223100	CL220.3	91258506	19	15	1160	983.75	0.033	0.0256	20.8	17.975	98.8	92.1	
100000	1220100	CL222.2	91258507	15		870	*****	0.031		21.6		84.6		
			J									S-715		
153748	1223115	CL230.3	91258508	18	12.9	963	952.5	0.029	0.0192	13.8	14.75	100	92.5	
		CL232.2	91258509	7.8		942		0.0094		15.7		85		
154215	1223453	CL240.3		0.0	9.1	986	1042	0.027	0.0408	40	46 2	00.0	97.7	
1342 13	1223403	CL240.3 CL300.3SS	91258447	9.6 8.8	5.1	1100	1442	0.037 0.03	0.0205	19 17	18.5	98.6 98.8	91.1	
		CL242.2		8.9		1040		0.004		19.5		95.7		
		CL242.2	9 1230200	0.5		1040		V.004				. 30. <i>1</i>		
454200	1223313	CL250.3	91238207	7.8	7,45	989	902.5	0.02	0.0125	17.6	19	96.4	92.2	
		CL252.2	91238208	7.1		816		0.005		20.4		88		
450054	4000004	01 000 0	04070740				484					400		
453654	1222824	CL260.3	91258516	8.7	6.7	928	951	0.029	0.022	17.7	17.4	100	97.3	
		CL262.2	91258519	4.7		974		0.015		17.1		94.6		
		CL270.3RS	91258520	4.7	4.15	258	252.5	0.046	0.0465	26.1	13.0735	29.1	29.55	
		CL272.2RS	91258521			247		0.047		0.047		30		
472129	1220717	PSL1A0.5	87278100	29	29	846	846	0.06	0.06	22	22	56	56	
472256	1220642	PSL2A0.5	87278101	-4	<4	163	163	0.047	0.047	22	22	31	31	•
4/ 2200	1220042	FSLZAU.5	0/2/0101	`	**	103	103	U.U4/	U.U47		44) I	31	
472317	1220642	PSL3A0.1	87278104	<4	<4	420	310	0.027	0.0292	25	23	49	38	
		PSL3A0.5	87278105	<4		373		0.036		21		40		
		PSL5AO.5DUP	87278102	<4		412		0.035		21		42		
		PSL3A1.0	87278106	<4		163		0.036		27		33		
		PSL3A4.0	87278107	<4		184		0.012		22		26		
	40000										<u>.</u>		<u> </u>	
472407	1220657	PSL4A0.5	87278108	<4	<4	299	299	0.042	0.042	18	18	29	29	
172410	1220657	PSL4B0.5	87278109	<4	<4	239	228	0.052	0.033	20	22	27	29	
ATIV		PSL6A0.5	87278111			231	204	0.032	V:U4U	25		31	2.	
						215		0.027		20 22		28		
		. ODUMO.UDUF	J. 2. 0 17/	. 77 				V.V <i>E1</i>						
472220	1220800	PSB1A0.5	87278112	<4	<4	763	763	0.052	0.052	34	34	58	58	
	•													
172308	1221004	PSB2A0.5		<4	<4	494	374.5	0.058	0.052	23	23	3,9	39	•
		PSB6AO.5DUP	87278145	<4		255		0.046		23		39		

LAT	LON	SITE	NO.	Pb		Me		Hg		NI		Zn			
472404	1220945	PSB3A0.1	87278114	<5	7.405	916	499	0.058	0.0445	24	27	71	43		
47 2404	1220340	PSB3A1.0		<4	2.125	00000	435	8888	0:0445	(())	41	6666C	43		
			87278118	-		595		0.042		28 25		41		•	
		PSB3A3.0	87278123	<4		161		0.051		25		26			
		PSB3A5.0	87278124	<4		324		0.027		29		32			
472405	1220943	PSB3B0.1	87278128	<4	<4	562	302	0.052	0.02775	17	22	42	33		
1		PSB3B1.0	87278129	<4		291		0.028		28		41			•
		PSB3B2.0	87278130	<4		138		0.012		21		23			
		PSB3B4.0	87278131			218		0.019		22		26			
				1.						₩ 					
472406	1220941	PSB3C0.1	87278132	15	5.25	1,310	474	0.058	0.03325	16	23	54	33		
		PSB3C2.0	87278133	<4		232		0.035		24		29			
		PSB3C4.0	87278134			141		0.02		24		26			
		PSB3C5.0	87278135			212		0.02		27		24			
						*** 7				₩		₩ ⁻ -			
472405	1220942	PSB3D1.0	87278136	<4	<4	321	321	0.028	0.028	24	24	34	34		
				•	•							***	•		
472404	1220944	PSB3E1.0	87278139	<4	<4	738	738	0.058	0.058	25	25	38	38		
				· ·	•										
472508	1220914	PSB4A0.1	87278140	<4	<4	143	141	0.043	0.0356	17	17	33	29		
		PSB4A0.5	87278141	<4		164		0.043		17		33			
		PSB4A2.0	87278142	<4		137		0.04		19		27			
		PSB7A2.0DUP	87278146	<4		122		0.041		16		26			
		PSB4A4.0	87278143	-		141		0.011		16		24			
														_	
472653	1221116	PSB5A0.5	87278144	<4	<4	90	90	0.012	0.012	9	9	12	12		
472143	1220734	PSSED1A	87278148	<4	<4	2,750	2750	0.076	0.076	16	16	99	99		,
472129	1220742	PSSED1B	87278149	397	207.5	367	818.5	0.037	0.036	22	21.5	101	82		
		PSSED1C	87278150	18		1,270		0.035		21		63			
472131	1220725	PSSED2A	87278151	<4	<4	721	607	0.035	0.027	23	23	96	90.5		
		PSSED2B	87278152	<4		493		0.019		23		85			
472112	1220742	PSSED3A	87278153	<4	4	1,090	2170	0.023	0.0475	25	25	57	71		
		PSSED3B	87278154	<4		3,250		0.072		25		85			
			* (***)												

483845	1225008	PS10.3	93088519	16	10.26	1210	951.6	0.0726	0.04974	29.8	36.86	59.6	54.6		
		PS300.3DUP	93088637	13		1090		0.0671		25.3		54.6	- -		
		PS12.2	93088520	5.8		819		0.046		30		43.6			
		PS302.2DUP	93088638			972		0.04		22.8		40.5			

E-1	LON	SITE	NO.	96		10.6		146		N		7.1		
		PS155	93088521	11		667	•	0.023	***	76.4		74.7		
483355	1225604	PS20.3	93088522	6.5	e nagona	654	523	0.039	0.029	21.3	18.7	65.1	52,575	•
403333	1225004	PS270.3DUP	93088631		6.033333	637	UZG	0.039	0.023	17.5	19:1	65.4	02,970	
										W ⁻				•
		PS22.2	93088523			459		0.019		22.7		44.7		
		PS272.2DUP	93088632	4.2		342		0.015		13.3		35.1		
485910	1223507	PS30.3	93088524	10	6.866667	538	509.6667	0.043	0.037333	25.9	24,66667	82.5	67.16667	
		PS32.2	93088525	5.2		298		0.043		28.5		59.4		
		PS355	93088526	5.4		693		0.026		19.6		59.6		
***	4044000													
481630	1214308	PS40.3V	93088527		29.47857	663	659.9286	0.0712	0.094407	53.7	54,68571	109	116.75	
		PS320.3SS	93088641			586		0.0665		48.4		100		
		PS41.0V	93088528			854		0.0571		51.8		110		
		PS42.2V	93088529	20		484		0.195		62.5		83.3		
		PS43.0V	93088530			520		0.143		58.9		94.5		•
		PS44.9V	93088531			513		0.109		62.3		116		
		PS40.3A	93088532			819		0.044		51.8		227		
		PS40.3B	93088533	16		660		0.0986		54.1		104		
		PS40.3C	93088534			673		0.0928		48.1		173		
		PS40.3D	93088535	14		934	5	0.0521		39.9		105		
		PS42.2A	93088536			506		0.114		59.6		95.7		
		PS42.2B	93088537			611		0.106		59.1		108		
		PS42.2C	93088538	14		793		0.0829		53.8		103		•
• .		PS42.2D	93088539	11		623		0.0895		61.6		106		
480938	1224043	PS50.3	93088540	6.7	5,9	804	557.5	0.036	0.0285	24.1	25.8	63.2	54,15	
		PS51.5	93088541			311		0.021	•••	27.5		45.1		
			00000041	0.1		011		0.021		27.0		70.1		
480239	1231923	PS60.3	93088542	6.7	5.133333	471	561	0.044	0.03	14	17.06667	32.5	35.8	
		PS62.2	93088543			314		0.027		17.5		35.4		
		PS655	93088544	4.9		898		0.019		19.7		39.5		
471643	1220203	PS70.3V	02000545	44	6.521429	400	48A 8944	0.0046	A 0.45.4P*	00.9	48.49444	P0 0	***	
4/ 1043	1220203	PS71.4V	93088545 93088546		0.02 1423	422 485	350,5714	0.0616 0.0506	0.043457	22.3 14.3	18.17143	× ·	44.5	
		PS72.2V				*		×		×		56		
		PS72.2V PS73.0V	93088547			319		0.021		17.6		32.1		
			93088548	4.3		429		0.0523		14		58.3		•
		PS73.8V	93088549			438		0.0532		14.8		57.3		
		PS70.3A	93088550			366		0.0591		19.4		45.6		
		PS70.3B	93088551			379		0.0565		16.4		43.1		
		PS70.3C	93088552			315		0.0591		17.5		42.6		•
		PS310.3SS	93088639	9.9		316		0.044		16.8		44.5		
		PS70.3D	93088553	6.4		251		0.032		18.3		36.5		
<u> </u>		PS72.2A	93088554	3.4		262		0.026		22.8		36.4		

E : 1	LON	SITE	110	1985		Me		Hg		MI		Zn		
*****************	***************************************	PS72.2B	93088555	3.2	***	247		0.027	***	19.3		36.2		•••••
		PS72.2C	93088556	4.6		353		0.032		21.4		40.6		
		PS72.2D	93088557			326		0.034		19.5		37.2		
475035	1214917	PS80.3	93088558	23	16.2	493	525.5	0.107	0.09395	29.3	34.95	41.2	46.8	
		PS82.2	93088559	9.4		558		0.0809		40.6		52.4		
474226	1225456	PS90.3	93088560	12	9.9	1720	1291.5	0.0569	0.05485	32.1	36,3	90.8	89.4	
		PS91	93088561		777	863		0.0528		40.5		88		
			000000,	7.0				0.0020		70.0				
475420	1225412	PS100.3	93088562	11	8.2	276	276.5	0.0535	0.04475	21.6	21,5	33.4	32.3	
		PS102.2	93088563	5.4		277		0.036		21.4		31.2		
471843	1223157	PS110.3V	93088564	10	22,01538	510	383,3077	0.043	0,077308	24.8	25,24615	65.9	43,95385	
47 1043	1223 131				22,01990		702,3411	*	V.V/ / 300	*	20,240 10	*	45,50500	•
a Arr		PS111.4V	93088565	6.7 5.5		267		0.042		28.4		45.4		
		PS112.2V		5.5		193		0.04		30.2		35.8		
	· ·	PS113.0V	93088567	6		289		0.0816		33.6		39.6		
		PS114.0V	93088568			462		0.0562		25.5		28.3		
		PS110.3A	93088569	94.1		908		0.215		12.6		52.1		
		PS110.3B	93088570	19		321		0.072		27.7		44.6		
		PS110.3C	93088571	66.3		428		0.198		20.3		62.9		
		PS110.3D	93088572			585		0.0562		23.2		56.6		
		PS112.2A	93088573			153		0.05		24.7		29.7		
		PS112.2B	93088574	5.8		312		0.027		23.6		28.8		
1		PS112.2C	93088575	9.6		348		0.083		27.9		47.2		
		PS112.2D	93088576	5.4		207		0.041		25.7		34.5		
472827	1224307	PS120.3	93088577	8.5	6.233333	241	183,6667	0.0541	0.045033	20.9	24,63333	24.2	24,43333	
		PS122.2	93088578			172		0.049		27.2		26.6		
		PS292.2SS	93088636			138		0.032		25.8		22.5		
471723	1232215	PS130.3	93088579	3.9	4.25	2020	1670	0.0717	0.05635	55.2	57,45	135	132.5	
		PS132.2	93088580	4.6		1320		0.041		59.7		130		
472232	1225818	PS140.3	93088581	76	4.733333	1210	591,6667	0.045	0.0302	23.5	25.23333	55.1	43	
TI LLUL	1220010	PS141.5	93088582		7.7 99499	303	V3 1,0001	0.043	U.UUUZ	29.9	20,2000	39.9	79	
		PS141.5 PS1455						₩				8		
jan kudi		P3 1400	93088583	2.9		262		0.0086		22.3		34		
465504	1225420	PS150.3V	93088584	5.7	4.25	603	367.2143	0.02	0.021779	22.8	21.62857	47	40.61429	
-		PS151.2V	93088585	2.9		425		0.022		22.5		42.8		
		PS152.2V	93088586	2.7		302		0.025		22		39.3		
		PS153.0V	93088587			210		0.0086		21.5		37.7		
		PS154.3V		3.9		227		0.0093		19.2		36.2		
		PS312.2SS	93088640			249		0.0055		21.2		35.4		

LAT	LON	SITE	NO	Pb		Me		Hg		Mi		Zn		
	***************************************	PS150.3A	93088589	4.9	~	312		0.032		21.3		40.1		
		PS150.3B	93088590	6.9		764		0.025		21		47.2		
		PS150.3C	93088591	6.5		799		0.027		21.7		47.3		
		PS150.3D	93088592	6.2		348		0.027		20.8		41		
		PS152.2A	93088593	3.6		183		0.022		20.5		37.2		
		PS152.2B	93088594	3.8		230		0.024		21.4		36.6		
		PS152.2C	93088595	3.1		232		0.02		23		38.2		
		PS152.2D	93088596			257		0.027		23.9		42.6		
80812	1221653	PS160.3	93088597	22.5	13.5	405	306.5	0.064	0.046	21.7	29.9	51.1	45.15	
		PS161.2	93088598			208		0.028		38.1		39.2		
71307	1222000	PS170.3	93088599	12	7.9	250	216	0.0623	0.04265	11.6	10.65	46.5	36.3	
		PS172.2	93088600			182		0.023		9.7		26.1		
71055	1241132	PS180.3	93088601	20.2	10.975	233	252.75	0.0799	0.065725	7	12.05	32.9	43.65	
	-	PS182.2	93088602		7.7	274		0.108		11.2	T.	37.6		
		PS282.2SS		7.1		287		0.045		14.8		54.3		
		PS1855	93088603			217		0.03		15.2		49.8		
74657	1241729	PS190.3	93088604	5.9	6.1	134	234.5	0.0919	0.053633	6.1	12.975	30.1	47.65	
		PS192.2		6.9		300		0.045		15.8		56.4		
		PS1955	93088606			500		0.024		12.7		54.1		•
73919	1222451	PS200.3V	93088607	19	13.72667	516	284.3333	0.0541	0.066833	25.7	27.26667	35.2	32.3	
		PS200.8V	93088608	5.1		264		0.031		27.3		28.9		
		PS202.2V	93088609	<2		129		0.028		20.6		19.9		
		PS203.0V	93088610	<2		193		0.023		27.5		22.9		
		PS204.5V	93088611			244		0.032		27.3		25.2		
		PS200.3A	93088612	46.1		621		0.28		27.2		48.6		
		PS290.3SS	93088635	42.4		519		0.231		27.4		48.1		
		PS200.3B	93088613	37.8		330		0.101		31.6		45.3		
		PS200.3C	93088614			341		0.0674		27.3		40.6		
		PS200.3D		11		228		0.033		29		32.4		
		PS202.2A	93088616			149		0.028		29.7		24.9		
		PS280.3SS	93088633			252		0.029		22.9		38.7		
		PS202.2B	93088617			148		0.023		28.6		24.4		
		PS202.2C		3.1		147		0.022		30.7		25.1		
		PS202.2D	93088619			184		0.02		26.2		24.3		•
70353	1221824	PS210.3	93088620	10	10	1020	679.5	0.0869	0.07595	12.6	19.1	36.9	41.7	•
	1027	PSWRF2.7	90478097		••	339		0.065	**************************************	25.6	1. T. J. J.	46.5	75: A 9-5	
65501	1223333	PS220.3	93088621	3.0	4.6	697	740	0.023	0.0265	11.9	21,7	54.2	58,45	

LAT	LON	SITE	NO.	Pb		Ma		Hg		Ni		Zn		
		PSWRF2.5	90478098	5.4		783		0.03		31.5		62.7		
65728	1223904	PS230.3	93088622	3.5	4.75	386	365	0.034	0.0365	11.6	17,35	27.5	32.7	:
		PSWRF2.5	90478099	6		344		0.039		23.1		37.9		
75451	1221040	PS240.3	93088623	13	10.15	784	770.5	0.0595	0.05325	32.8	44.5	72.2	81,45	
7 040 1	122 1040	PSWRF2.5	90478100		10.10	757	770.0	0.047	U.UUUEU	56.2		90.7	V1.70	
		F3VINF2.0	304/ 6 100	7.5		101		0.047		30.2		30.7		
82413	1221025	PS250.3	93088624	4	3.8	245	361.5	0.028	0.043	131	244.5	38.8	43.35	
		PSWRF2.7	90478101	3.6		478		0.058		358		47.9		
64743	1221631	PSLB10.3			13,5	364	387.5	0.0665	0.05675	9.8	10.05	67.3	52,35	
		PSLB12.2	93088626	7.5		411		0.047		10.3		37.4		
72742	1221326	PSLB20.3	93088627	4.4	4.45	772	753.5	0.049	0.0631	43.5	52.7	72.6	78.1	
		PSLB22.2	93088628	4.5		735		0.0772		61.9		83.6		
60223	1184019	PS260.3RS	93088629	5.9	5,95	420	411	0.0065	0,0068	11.4	10,65	47.6	47.95	
00223	1 1040 13	PS262.2RS	93088630		U.50	402	711	0.0055	U.UVD0	9.9	10,00	47.0 48.3	41.30	
		F3202.2R3	33000030			402		U.UU7 1		5.5		40.3		
72457	1184356	SB10.3	92268500	8 2	6.75	364	366	0.017	0.0172	7.3	8.325	47.3	46.15	
		SB330.3SS	92268574	8.3		353		0.017		7.5		49.8		
		SB12.2	92268501	5		369		0.029		8.4		41.7		
		SB320.3SS	92268573	5.7		378		0.0058		10.1		45.8		
73910	1180946	SB20.3	92268502	15	14.33333	443	463,3333	0.016	0.014333	8.4	9.466667	54.6	51,8	
		SB340.3SS	92268575	15		435		0.013		8.6		55.6	•	
		SB22.2	92268503			512		0.014		11.4		45.2		
						· · · ·								
75026	1175046	SB30.3		11	12	515	470	0.013	0,009475	XX	9.2	51.9	53,3	
		SB32.2	92268505	13		526		0.0074		10		54.4		
		SB270.3 SS	92268568	14		520		<0.005		10.5		58.5		
		SB3SSBD	92268506	10		319		0.015		8.7		48.4		•
70819	1174318	SB40.3	92268507	8.2	8.8	418	436	0.018	0.019	12.3	12,2	41.2	41.05	
		SB41.2	92268508			454		0.02		12.1		40.9		
74232	1173037	SB50.3	92268509		10.05	586	558	0.035	0.0225	8	8.7	70.6	67.45	
		SB51.3	92268510	11		530		0.01		9.4		64.3		
80033	1172325	SB60.3	92268511	0.6	8.75	730	577.75	0.012	0.01225	11.1	9.875	58.5	46.3	
COOO	111 2323	SB290.3SS	92268570	9.6 10	9:14	130 1170	G11.19	0.012 0.012	U.U IZZU	11.8	J.U. U	66.3	74.4	
		SB62.2	92268512			242		0.009		10		38.6		
		SB6SS	92268513			242 169		0.00 9 0.016		6.6		36.6 21.8		

LAT	LON	SITE	NO.	Pb		Mn		Hg		Ni		Zn		
••••••														
481824	1173603	SB70.3	92268514	•	8.666667	847	557.3333	0.022	0.012667	9.8	8.1	70.7	61.8	
		SB71.8	92268515			597		0.0067		10.2		81.9		
		SB7SS	92268516	4		228		0.0093		4.3		32.8		
475949	1181738	SB80.3	92268517	17	15.66667	488	446	0.013	0.0105	9.1	10,03333	56.1	52.56667	•
		SB310.3SS	92268572	18		452		0.011		10.2	· · ·	57		
		SB82.2	92268518	12		398		0.0075		10.8		44.6		
485517	1173112	SB90.3	92268519	15	12.83333	434	394.3333	0.025	0.0168	18.1	16.7	56.3	70,8	
	e a de la companya de	SB91.4	92268520			535		0.018		20		58		
		SB9SBD	92268521			214		0.0074		12		98.1		
480433	1171952	SB100.3	92268522	17	16	858	655	0.021	0.0185	11.6	11.8	78.4	71	
100-100	117 1002	SB102.2	92268523			452	•	0.016	0.0100	12	I feld	63.6	**	* - 1
		0510212				702		0.0 10		12		00.0		
474434	1175413	SB110.3	92268524	15	13.5	514	561.25	0.015	0.014625	13.5	12.55	64.4	61.325	
		SB111.3	92268525	12		777		0.0085		13.2		60		
		SB350.3SS	92268576	15		456		0.024		12.7		59.4		•
		SB11SBD	92268526	12		498		0.011		10.8		61.5		
474018	1174407	SB120.3	92268527	11	10.5	514	505	0.014	0.0215	14	16,4	43.8	43.2	•
		SB122.2	92268528	10		496		0.029		18.8		42.6		
471929	1170403	SB130.3	92268529	10	10.875	550	764.75	0.018	0.01625	16	15.775	51.8	47.575	
		SB300.3SS	92268571	12		656		0.017		15.4		51.9		
		SB132.2	92268530			1030		0.02		19.9		48		
		SB13SBD	92268531	8.5		823		0.01		11.8		38.6		
472534	1171355	SB140.3	92268532	10	9.05	469	390.875	0.027	0.014063	12.6	10,85125	45.3	42.4875	
		SB142.2	92268533	9.4		481		0.017		12.2		50.3		
		SB140.3V	92268534	9.3		445		0.019		11.7		46		
		SB140.8V	92268535	10		411		0.013		10.8		46.2		
		SB142.2V	92268536	8.3		381		0.01		10.3		37.8		
		SB280.3SS	92268569	11		397		<0.005		11.2		43.6		
		SB143.7V	92268537	7.4		305		0.013		9.61		36.7		
		SB145.0V	92268538	7		238		0.011		8.4		34		
470433	1171952	SB150.3	92268539	12	10.8	614	638.5	0.017	0.014	12	12.05	51.2	44.3	
		SB152.2	92268540			663		0.011		12.1		37.4	7.77	
								515 1				₩11 T		* * * * * * * * * * * * * * * * * * * *
472343	1172004	SB160.3	92268541		10.65	498	599	0.014	0.01195	17.5	18,6	47.4	. 48.15	
		SB162.2	92268542	12	900000000000000000000000000000000000000	700	200000000000000000000000000000000000000	0.0099		19.7		48.9		

LAT	LON	SITE	NO.	Pb		Mn		Hg		Ni	Zn		
474257	1174500	SB170.3	92268543	16	15	477	475	0.0096	0.008	11.2	12,35 61.5	56	
414201	1174000	SB170.3 SB172.2			19		710		V.UV6		12.30 61.5 50.5	00	
		3D 17 2.2	92268544	14		473		0.0064		13.5	50.5		
474346	1170832	SB180.3	92268545	11	11.5	601	461	0.019	0.01075	10.4	9.75 62.2	55.65	
		SB182.2	92268546	12		321		<0.005		9.1	49.1		
475233	1173614	SB190.3V	92268547	14	15.77867		417.4286	0.017	0.006164	10.5	10.36643 54.2	50,89286	
		SB191.2V	92268548	14		354		<0.005		10	51.1		
		SB192.2V	92268549	15		330		<0.005		10.7	43.9		
		SB193.6V	92268550	23.9		349		<0.005		12.2	41.3		
		SB194.4V	92268551	17		371		<0.005		11.6	45.8		
		SB190.3A	92268552	14		563		<0.005		10.6	66.2		
		SB192.2A	92268553	14		490		0.0069		12	61.7		
[] A [] [] .		SB190.3B	92268554	15		508		0.0096		10.3	53.8		
		SB192.2B	92268555	13		276		<0.005		8.73	35.2		•
		SB190.3C	92268556	16		483		0.0058		10.2	54		
		SB192.2C	92268557	17		424		0.0147		12.5	50.8		
		SB190.3D	92268558	14		501		<0.005		8.3	49.8		· •
		SB192.2D	92268559	14		299		0.0053		8.9	38.5		
		SB19.SS	92268560	20		432		0.0095		8.6	66.2		
474232	1171937	SB200.3	92268561	9.9	8.35	600	611	0.256	0.1312	5.2	4.9 59.9	68.4	
		SB202.2		6.8		622		0.0064		4.6	76.9		
-		00202.2	02200002			ULL.		0.0007		7.0	70.5		
473743	1171000	SB210.3	92268563	12	12.8	518	454	<0.005	0.00425	9.3	9,8 58.2	53.9	
		SBRU2.3	90478140	13.6		390		0.006		10.3	49.6		
474313	1173053	SB220.3	92268564	13	12.5	682	555	0.012	0.012	10.3	12.45 53.9	50.35	
		SBRU2.5	90478141	12		428		0.012		14.6	46.8		
475037	1175147	SB230.3		11	11	441	445.5	0.0087	0.00635	8.9	11,4 40.3	44.25	
		SBRU2.8	90478142	11		450		0.004		13.9	48.2		
475002	1175805	SB240.3	02260566	40	10.6	382	478.E	-0 00E	0.00475	8.8	0.05 40.5	****	
4/ 3002	11/5605		92268566	10	IV.0		376.5	<0.005	0.00475	8	9.65 43.5	44.05	
		SBRU2.6	90478143	11.2		371		0.007		10.5	44.6		
475232	1180911	SB250.3	92268567	8.5	9.5	365	354.5	0.0053	0.00565	9.1	10.15 41.1	42	
		SBRU2.6	90478144	10.5		344		0.006		11.2	42.9	可	
		-2								· 1.4	74.0		
475453	1172838	SB380.3	92268577	12	10.65	496	374	0.0083	0.0054	10.4	9.85 62	53.35	
		SB382.2	92268578			252		<0.005		9.3	44.7		
										- 			
475349	1171054	SB390.3	92268579	8.6	7.8	1140	769.5	0.0079	0.0065	5.4	4.6 34.7	29.7	

LAT	LON	SITE	NO.	Pb		Mn		Hg		Ni		Zn		
	•••••	SB391.5	92268580	7		399	****	0.0051	***	3.8		24.7	****	
463437	1205022	YB10.3	91258554	4.5	4.5	761	761	0.017	0.017	9.8	9.8	60.6	60.6	
463222	1202650	YB20.3	91258556	6.2	6.2	510	510	0.014	0.014	19.3	19.3	53.6	53.6	
463153	1203223	YB30.3	91258558	5.9	5.9	613	613	0.011	0.011	14.8	14.8	55.9	55,9	**
462623	1195653	YB40.3	91258559		7	552	493.5	0.013	0.0165	17.6	19.1	54.6	52.7	
		YB42.2	91258560	6.7		435		0.02		20.6		50.8		
464355	1192417	YB50.3A	04950566		A 027444	404	ina.	0.044	0.047744	49 E	44 82	E4 0	E0 10100	
461355	1 1324 17	YB50.3B	91258566 91258568		9.657143	461 427	488	0.014	0.017714	13.5	14,95	51.9	58.46429	
		YB50.3C	91258537			437 469		0.011 0.026		11.9 15.1		45.4 56.8		
		YB50.3D	91258539			505		0.028		14.2		58.9		
		YB50.3V	91258574			465		0.018		12.5		55.5		
		YB340.3SS	91258582			470		0.017		14.5		55.8		
		YB50.7V	91258575			525		0.014		14.1		58.9		
		YB51.3V	91258576			477		0.016		18		62.7		
		YB52.2A	91258567			546		0.02		15.1		65.4		
1		YB52.2B	91258564			435		0.012		13.9		51.3		4
		YB52.2C	91258538			518		0.016		15.4		65.5		. · ·
		YB52.2D	91258540			505		0.021		16.3		63.3		
		YB52.2V	91258577	13		484		0.025		16.6	,	60.4		
		YB53.2V	91258565			535		0.019		18.2		67.2		
461445	1200151	YB60.3	91258562	8	6,433333	875	840	0.028	0.030333	36.6	40,36667	73.3	77.43333	
		YB332.2SS	91258569	7.2		876		0.027		37.9		79.3		
		YB62.2	91258563	4.1		769		0.036		46.6		79.7		
460709	1204921	YB70.3	91258421		3.875	1460	1375	0.029	0.023	11.4	13,55	92.5	90.7	
		YB72.2	91258422	2.6		1290		0.017		15.7		88.9		
	4000700	\/D00.0												
460959	1203706	YB80.3	91258423		4.066667	681	671	0.022	0.028333	14	16,06667	58.5	60.7	
		YB362.2	91258429			638		0.021		12.5		56.6		
		YB81.8	91258424	4.5		694		0.042		21.7		67		
461920	1202619	YB90.3A	91258571	27	0.474400	950	C20 2274	0.000		40 5	44.48484	F0 4	10.50044	
+0 1320	12020 13	YB90.3B		3. <i>1</i> <2	2.171429	250 514	638.3571	0.023 0.019	0.018914	12.5 10.7	13,25357	52.4 47.2	48.50714	
		YB90.3C	91258578			1350				8		47.3		•
1						86		0.016		13.4		51.3		
		YB342.2SS	91258583			1160		0.022		11.8		50.4		
1		YB90.3D	91258581			475		0.014		11.8		53.8		
		YB90.3V	91258417			412		0.019		9.2		44.3		
L	~	YB90.7V	91258418	<2	:0000-00000000000000000000000000000000	392	10500000000000000000000000000000000000	0.014		4.9		28		

ATT.	LON	SITE	NO.	Pip		(4)				Ni		Zn		
		YB92.2A	91258572	2.3	****	566		0.019		18		53.8		
		YB92.2B	91258580	<2		354		0.0058		9.45		32.8		
		YB92.2C	91258579	2.6		729		0.011		14.2		48.2		
	•	YB92.2D	91258541	<2		501		0.016		10.1		43.3		•
		YB92.2V	91258419	2.3		507		0.02		12.3		42.8		
		YB93.5V	91258420	<2		756		0.031		24.3		62		
		YB95.0V	91258570	6.3		971		0.035		22.9		68.7		
462827	1202727	YB100.3	91258542	8.3	6.1	701	708.5	0.02	0.0275	17	· 18.3	61.8	60.3	
		YB102.2	91258543	3.9		716		0.035		19.6		58.8		•
464415	1203715	YB110.3	91258544	5.1	9.133333	501	427.6667	0.012	0.0406	8.7	10.3	43.9	41.03333	
		YB360.3SS	91258412	3.3		397		0.046		10.8		39.3		
		YB112.2	91258411	19		385		0.0638		11.4		39.9		
471215	1205848	YB12.2	91258555	<2	5.4	607	564,4286	0.0085	0.030464	11.3	81,75714	62.4	49.72143	
		YB120.3A	91258430	6.5		543		0.018		75.3		44.7		
		YB120.3B	91258432	8.7		593		0.015		60.3		43.4		
		YB120.3C	91258413			668		0.016		59.8		44.8		
		YB120.3D	91258415			660		0.016		59.6		48.2		
		YB120.3V	91258425			936		0.022		57.5		48.4		
		YB120.7V	91258426	<2		583		0.032		67.6		47		•
		YB121.0V	91258427	2.3		514		0.032		70.2		50.9		
	•	YB122.2A	91258431	7.3		434		0.017		133		49.1		
		YB122.2B	91258433	7.4		385		0.014		72.1		44.1		
		YB122.2C	91258414	7.4		433		0.017		140		52.3		
•		YB122.2D	91258416	8.2		466		0.17		74.1		51.3		
		YB122.2V	91258428	3.8		555		0.026		80.8		51.9		
		YB123.2V	91258526	5.2		525		0.023		183		57.6		
471015	1205856	YB130.3	91258404	5.1	6.5	1250	1119	0.022	0.082	35.1	38	113	101,4333	
		YB350.3SS	91258408	7.9		1540		0.17		34.7		115		
		YB132.2	91258405			567		0.054		44.2		76.3		
470505	1202520	YB140.2	91258524	7.6	4.8625	809	1546.125	0.014	0.0123	14.2	16,1	65.5	62,9125	
		YB140.2V	91258545			1610		0.014		16.1		64.6	7.7	
		YB140.6V	91258546			1600		0.015		14.7		61.8		
		YB330.3SS	91258551			2000		0.013		16.4		61.4		
		YB141.0	91258523			1050		0.018		16.4		59.1		
		YB141.0V	91258547			2110		0.0088		19.3		66.2		
		YB141.7V	91258548			1740		0.0088		16.5		66.3		
		YB142.5V	91258525			1450		0.0068		15.2		58.4		
465850	1204027	YB150.3	91258549		7,05	725	741.5	0.015	0.016	14.8	15,5	49.3	51,35	

LAT	LON	SITE	NO	Pb		Mn		Hg		Ni		Zn		
	***************************************	YB151.6	91258550	5.9	******	758	*****	0.017		16.2		53.4		
	** **													
471047	1204419	YB160.3	91258406	4.9	7.166667	539	565.6667	0.016	0.017333	23.3	24	45	44.3	
		YB352.2SS	91258409	8.3		554		0.018		22.3		44.3		
·		YB162.2	91258407	8.3		604		0.018		26.4		43.6		
				• 11										
471407	1204807	YB170.3	91258552	5.4	5.3	647	631	0.016	0.032	40.4	48.25	44.4	43.75	
		YB172.1	91258553	5.2		615		0.048		56.1		43.1		
						8 8					<u> </u>			
463713	1211038	YB180.3	91258528	5.1	5.4	1440	1008	0.021	0.024	15.8	17.3	61.7	54.75	
		YB182.2	91258527	5.7		576		0.027		18.8		47.8		
	4005044	VD400.0	04050400			4040	4448.80			44.0		444		•
462441	1205344	YB190.3	91258403	6.9	6.728571	1248	1210.857	186	0.016143	11.8	12.68571	111	94.17143	
1 1 1		YB190.3V YB190.7V	91258529	6.1 5.7		1250		0.014		12.1		112		
		YB190.7V	91258530 91258400	5.7 6.3		1020 1110		0.014 0.015		12 13.6		95.4 97.4		
		YB191.2V	91258410	9.4		998		0.016		11.6		87.1 76.3		
		YB192.2V	91258401			1350		0.015		15.3		76.5 85.6		
		YB194.0V	91258402			1500		0.013		12.4		91.8		
		15104.00	0 1200402	0.0		1000		0.021				01.0		
470048	1210530	YB200.3	91258533	7	6.65	261	164.45	0.015	0.0155	2.6	2.15	54.7	45.7	
		YB201.0	91258534			67.9		0.016		1.7		36.7		•
										\$ \$				
472528	1203915	YB210.3	91258535	21.2	17,1	863	786.5	0.118	0.1165	187	163	84	78.85	
		YB210.8	91258536	13		710		0.115		139		73.7		•
472417	1212858	YB22.2	91258557	5.4	15.2	575	384.3333	0.026	0.051	28.4	14,53333	54.6	39.26667	
		YB220.3	91258531	31.8		286		0.0708		5.5		26.7		
		YB222.0	91258532	8.4		292		0.0562		9.7		36.5		•
461432	1191954	YB230.3	91258439	6.6	7.4	396	392.5	0.0085	0.00725	13	12.9	45.7	43.6	
		YBRO2.5	90478123	8.2		389		0.006		12.8		41.5		
	• 1			Agricon Contraction										V
461727	1194425	YB240.3	91258440	7.8	8.26	432	396.5	0.022	0.0205	18.3	17.4	48.9	44.7	•
		YBRO2.5	90478124	8.7		361		0.019		16.5		40.5		
			100	_	<u></u>			.						
462522	1204526	YB250.3	91258441		8.1	524	494.5	0.011	0.021	15.7	16.35	50.6	45.55	
		YBRO2.5	90478125	8.2		465		0.031		17		40.5		
404040	4000007	VD000 0	04050445	0.5		F04	*****	0.040		47.0	48.44	.		
461843	1202937	YB260.3	91258442		9.7	561	620.5	0.016	0.0265	17.8	18,35	58.7	53.05	
		YBRO2.3	90478126	10.9		480		0.037		18.9		47.4		
464444	4000040	VD070 0	04050445	- 4		444	60*			4=				
464114	1203916	YB270.3	91258443	5.1	6.05	411	386	0.0877	0.07435	15 45 7	15,35	58.4	50.4	
		YBRO2.2	90478127	1 .		361	20000000000000000000000000000000000000	0.061		15.7	50000000000000000000000000000000000000	42.4	1,000,000,000,000,000	

LAT	LON	SITE	NO.	Ph		Mei		Hg		Ni		711		
420400	4000047	VD000.0	04050405			500		0.040		- 4		05 7	en a	
470433	1202247	YB280.3	91258435		7.3	596	540.5	0.012	0.011	7.4	8.55	65.7	68.1	
		YBRM2.5	90478118	9.4		485		0.01		9.7		70.5		
465846	1203919	YB290.3	91258436	6.5	7.85	680	680	0.01	0.01	28	28.95	69.7	75.2	
		YBRM2.6	90478119	9.2		680		0.01		29.9		80.7		
465114	1201724	YB300.3	91258437	6.1	6.35	519	486	0.019	0.0345	15.3	20.95	44.7	40.85	
		YBRM2.6	90478120			453		0.05		26.6		37		
465112	1201624	YB310.3	91258438	E O	6.55	618	716	0.011	0.0105	9.6	10.7	48	46,6	
403112	120 1024	YBRM2.6	90478121		0.00	814	710	0.01	4.0.100	3.6 11.8	1394	45.2	40.0	· · · · · · · · · · · · · · · · · · ·
														•
470058	1203855	YB32.2	91258561	* 40 00	5.133333		647.3333	0.038	0.035667		22,13333	8 .	47.23333	
		YB320.3	91258434			531		0.019		14.8		41		
		YBRM2.3	90478122	6.8		486		0.05		27.6		38.8		
		YB370.3RS	91258444	4	4	265	269	0.048	0.0495	26	26.3	30	30.45	
		YB372.2RS	91258445	4		273		0.051		26.6		30.9		
														•
														•
		and the second second												

XI. MTCAStat CALCULATIONS & SUMMARY STATISTICS

Calculation of Background Values

This Section contains all of the MTCAStat (MTCAStat is a software package developed for use with Microsoft Excel to meet the need for a fast, simple, integrated method of performing routine statistical analyses described in the statistical *Guidance for Ecology Site Managers*) calculations for 12 elements (Al, As, Be, Cd, Cr, Fe, Hg, Mg, Mn, Ni, Pb, Zn). The 90th percentile value is used by Ecology to calculate natural background values. For more information on how to calculate the 90th percentile, consult the "Statistical Guidance for Site Managers" (August, 1992). A summary of all MTCAStat statistical calculations is presented in Table 17. The statistical distribution maps were prepared using the Statgraphics program.

ALL VALUES = MG/KG

			STATISTICS

AI	GROUP "W"	PUGET SOUND	CLARK COUNTY	WEST (ALL)	STATEWIDE	EAST (ALL)	YAKIMA BASIN	SPOKANE BASIN	GROUP "E"
AI MAX	56,550.00	84,900.00	54,550.00	84,900.00	84,900.00	56,550.00	56,550.00	25,850.00	29,000.00
ioth	62,905.00	32,581,00	52,276.00	45,735.00	37,206.00	28,299.00	33,379.00	21,376.00	25,591.00
Coeff. Var.		0.47	0.39	0.63	0.55	0.42	0.38	0.26	0.53
MEAN	25,392.70	20,354.00	34,355.00	25,460.15	21,956.00	18,190.00	22,263.40	15,842.10	15,003.00
MEDIAN	21,700.00	17,900.00	31,192.00	21,760.00	21,956.00	16,600.00	20,800.00	15,000.00	14,800.00
50th	18,748.95	18,376.60	32,446.90	21,899.36	19,277.97	67,234.76	20,892.90	15,380.90	13,525.60
4 X 50th	74,995.80	73,506.40	129,787.60	87,597.44	77,111.88	268,939.04	83,571.60	61,523.60	54,102.40
MIN	5,670.00	7,390.00	13,750.00	5,670.00	5,670.00	6,140.00	10,650.00	8,933.00	6,140.00
As - GFAA	ANALYSIS							기가 있는 기가 되었다. 그렇다. 하는 하는 것	
MAX	8.99	17.17	6.89	17.168	28.6	28.6	28.6	10.32	7.19
90th	8.47	7.30	5.81	6.37	6.99	7.61	5.13	9,34	5,76
Coeff .Var.	N/A	0.7	0.47	0.58	0.7	0.82	N/A	0.65	0.91
MEAN	3.49	3.96	3.56	3.71	3.82	3.9	3.73	5.02	2.7
MEDIAN	2.8	2.86	3.045	2.91	2.92	2.95	2.64	4.99	2.53
50th	2.80	3.24	3.26	3.19	3.10	3.03	2.64	4.39	2.14
4 X 50th	11.20	12.96	13.04	12.76	12.40	12.12	10.56	17.56	8.56
MIN	1.7	1.45	1.45	1.45	0.5	0.5	0.89	1.13	0.5
Ве									
MAX	0.89	0.88	2.16	2.16	2.79	2.79	2.79	0.89	0.88
90th	0.75	0.61	2.07	1.51	1.44	1.27	1.57	0.84	0.61
Coeff. Var		0.44	0.35	1.03	0.78	0.50	0.39	0.22	0.45
MEAN	0.39	0.41	1.43	0.75	0.76	0.77	1.03	0.65	0.38
MEDIAN	0.40	0.36	1.48	0.53	0.67	0.72	0.93	0.66	0.31
50th	0.39	0.35	1.43	0.51	0.59	0.70	0.97	0.64	0.35
4 X 50th	1.56	1.40	5.72	2.04	2.36	2.80	3.88	2.56	1.40
MIN	0.10	0.19	0.30	0.10	0.10	0.21	0.39	0.38	0.23
Cd									
MAX	N/A	5.00	1.32	5.00	5.00	1.32	1.32	0.69	N/A
)Oth	0.10	0.77	0.93	1.20	0.99	0.81	0.93	0.72	N/A
Coeff. Var.	N/A	N/A	0.54	N/A	1.09	0.88	0.54	0.58	N/A
MEAN	N/A	0.80	0.55	0.83	0.63	0.48	0.55	0.40	N/A
MEDIAN	N/A	0.40	0.49	0.83	0.49	0.48	0.49	0.40	N/A
50th	0.10	0.37	0.49	0.40	0.32	0.30	0.49	0.36	N/A
1 X 50th	0.40	1.48	1.96	1.60	1.28	1.20	1.96	1.44	N/A
MIN	N/A	0.10	0.16	0.10	0.10	0.13	0.16	0.13	N/A

ALL VALUES = MG/KG

		STATISTICS

	GROUP "W"	PUGET SOUND	ES SUMMARY CLARK COUNTY		STATEWIDE	EAST (ALL)	YAKIMA BASIN	SPOKANE BASIN	GROUP "E"
Cr									
MAX	163.00	235.00	28.83	235.00	235.00	110.30	110.30	20.25	71.30
90th	78.46	48,15	26.57	47.40	41.88	31,88	38.27	17.81	37.80
Coeff. Var.		N/A	N/A	N/A	0.70	0.68	N/A	0.36	0.85
MEAN	37.74	30.29	20.64	28.67	23.37	17.67	21.67	11.95	18.92
MEDIAN	26.70	22.00	21.99	22.00	18.42	13.15	16.42	11.78	12.60
50th	28.18	22.00	21.99	22.00	18.69	14.51	16.43	11.43	14.69
4 X 50th	112.72	88.00	87.96	88.00	74.76	58.04	65.72	45.72	58.76
MIN	10.10	12.00	4.42	4.42	2.56	2.55	2.55	4.50	5.00
Cu									
MAX	99.40	243.50	51.71	243.50	243.00	53.00	50.15	29.03	53.00
90th	52.85	36.36	34.43	43,23	36.01	28.40	26.47	21.61	28.42
Coeff. Var.	1.56	N/A	0.42	0.81	0.65	0.46	N/A	0.39	N/A
MEAN	21.24	24.43	22.04	23.15	20.46	17.58	20.16	14.42	17.69
MEDIAN	8.05	15.00	21.78	17.80	17.07	16.30	19.23	14.14	14.70
50th	12.75	15.00	20.49	17.36	16.80	16.22	19.23	14.42	14.70
4 X 50th	51.00	60.00	81.96	69.44	67.20	64.88	76.92	57.68	58.80
MIN	4.33	4.00	9.71	4.00	4.00	4.00	4.13	4.04	9.10
Fe									
MAX	62,800.00	112,500.00	59,850.00	112,500.00	112,500.00	58,800.00	58,880.00	27,000.00	30,000.00
90th	49,170.00	36,128.00	58,665.00	50,125.00	43,106.00	36,644.00	51,451.00	25,026.00	29,631.00
Coeff. Var.		N/A	0.32	0.62	0.52	0.42	0.51	0.25	0.36
MEAN	25,557.33	21,680.10	40,734.60	28,192.00	25,903.72	23,471.67	29,780.40	18,744.84	19,935.70
MEDIAN	18,200.00	17,050.00	38,508.00	21,433.00	22,033.00	22,116.00	28,821.00	18,150.00	21,300.00
50th	21,446.18	17,050.00	39,180.10	24,152.41	22,987.15	21,810.59	27,689.80	18,276.16	19,027.40
4 X 50th	85,784.72	68,200.00	156,720.40	96,609.64	91,948.60	87,242.36	110,759.20	73,104.64	76,109.60
MIN	9,160.00	5,920.00	16,350.00	5,920.00	5,025.00	5,025.00	5,025.00	9,670.00	10,400.00
Hg									
MAX	0.19	0.09	0.05	0.19	0.19	0.31	0.12	0.13	0.03
90th	0.13	0.07	0.04	0.08	0.07	0.04	0.05	0.02	0.02
Coeff. Var.	************	0.44	0.37	0.65		0.96	0.75	N/A	N/A
MEAN	0.05	0.05	0.03	0.04		0.02	0.03	0.02	0.01
MEDIAN	0.04	0.04	0.03	0.04	0.03	0.01	0.02	0.01	0.01
50th	0.03	0.04	0.03	0.04		0.01	0.02	0.01	0.01
4 X 50th	0.12	0.16	0.12	0.16	0.00	0.04	0.08	0.04	0.04
MIN	0.01	0.01	0.05	0.01	0.00	0.00		0.00	0.00

ALL VALUES = MG/KG

TABLE 17: BACKGROUND VALUES SUMMARY STATISTICS

			ES SUMMARY CLARK COUNTY		STATEWIDE	EAST (ALL)	YAKIMA BASIN	SPOKANE BASIN	GROUP "E"
Mn									
MAX	930.00	2,750.00	1,960.00	2,750.00	2,750.00	1,546.12	1,546.00	769.50	652.00
90th	691.75	1,146.00	1,511.00	1,337.27	1,094.85	836.00	1,104.84	663.48	526.59
Coeff .Var.	0.90	0.61	0.50	0.91	0.69	0.43	0.49	0.23	0.33
MEAN	329.30	592.21	924.20	646.71	592.60	534.40	669.00	506.50	364.95
MEDIAN	231.00	474.00	915.50	531.25	509.58	490.75	589.00	470.00	345.00
50th	257.10	461.62	924.20	494.28	492.82	491.30	611.46	494.78	348.73
4 X 50th	1,028.40	1,846.48	3,696.80	1,977.12	1,971.28	1,965.20	2,445.84	1,979.12	1,394.92
MIN	78.00	90.00	150.00	78.00	78.00	164.45	164.45	354.50	233.00
Ni									
MAX	91.10	244.50	66.75	244.50	244.50	163.00	163.00	18.60	34.10
90th	54.19	38.19	21.04	44.20	38.19	24.54	45.89	16.19	22.41
Coeff .Var.	0.97	N/A	N/A	0.65	0.71	N/A	N/A	0.35	0.48
MEAN	25.66	29.82	17.72	25.44	21.49	17.25	24.83	10.96	13.77
MEDIAN	19.10	23.00	16.23	19.20	16.43	12.50	16.30	10.15	11.70
50th	19.12	23.00	16.23	20.57	16.92	12.40	16.23	10.49	12.54
4 X 50th	76.46	92.00	64.92	82.28	67.68	49.60	64.92	41.96	50.16
MIN	7.60	9.00	7.00	7.00	2.15	2.15	2.15	4.60	6.40
Pb									
MAX	12.00	29.60	207.50	207.50	207.50	17.10	17.10	16.00	11.70
90th	10.87	16,83	24.02	20.42	17.09	13.10	11.00	14.91	9.85
Coeff .Var.	0.72	2.14	0.47	1.42	0.79	0.42	0.24	0.42	0.32
MEAN	5.63	15.90	10.65	11.90	10.05	8.44	11.29	7.00	6.92
MEDIAN	4.00	9.80	6.86	8.20	7.90	7.82	6.53	10.80	6.40
50th	4.75	4.47	9.50	5.92	6.98	7.84	11.01	6.56	6.64
4 X 50th	19.00	17.88	38.00	23.68	27.92	31.36	44.04	26.24	26.56
MIN	2.10	4.65	2.13	2.10	2.10	2.17	2.17	6.75	4.20
Zn						3 - 발발경기 왕이 다시다. - 발가 가입			
MAX	116.00	132.50	97.70	132.50	132.50	244.50	101.43	71.00	82.30
90th	85.56	85.06	95.52	98.39	85.82	80.91	78.71	66.40	67.47
Coeff .Var.	0.58	0.50	N/A	0.52	0.41	0.35	0.28	0.21	0.35
MEAN	48.41	51.45	76.01	58.34	55.53	55.55	57.54	51.77	45.74
MEDIAN	44.50	43.65	78.50 70.50	54.08	51.12	50.64	52.90	50.90	41.00
50th	42.85	46.52	78.50	52.50	51.56	52.29	55.66	50.83	43.40
4 X 50th	171.40	186.08	314.00	210.00	206.24	209.16	222.64	203.32	173.60
MIN	21.10	12.00	21.40	12.00	12.00	26.30	39.30	29.70	26.30

MTCAStat Background Calculations ALUMINUM DATA

ALUMINUMSTATEWIDE DATA

IOIAL	100	Sta. devn. Median	12,153.93	
TOTAL	166	Std. devn.	12,153.93	
		*****		*
	•	Min. Max.	5,670.00 84,900.00	•
		IVIGA.	04,000.00	
Lognormal distribution?		Normal distribution?		
r-squared is: 0.99		r-squared is:	0.86	
Recommendations:				
	Use logno	ormal distribution.		
			<i>(-</i> 1	ndina
			Value correspo	
Enter distribution (L, N or X)		Enter percentile	o that percenti	le is:
Enter distribution (L, N or X)		Enter percentile 90	o that percenti 37,206.39	le is: 37206.3906
Enter distribution (L, N or X) L L = lognormal N = normal		Enter percentile	o that percenti	le is: 37206.390 37746.312

MTCAStat Background Calculations ALUMINUM DATA

##.

MTCAStat Background Calculations ALUMINUM DATA

26666.67	
26700	
26866.67	
26900	
27200	
27800	
28800	
29000	
29600	
30250	
30300	
30984.62	
31400	
31800	
32300	
32578.57	
32800	
33433.33	
34450	
37800	
37850	
39300	
41400	
41800	
42766.67	
43000	
43800	
45700	
46100	
48500	
48657.14	
48900	
50050	
50500	

Background calculations

AI - GROUP "W" REGIONS "A", "C", "D"

N = normal X = neither (so use nonparametric met	hod)	4 X 50th Coefficient of V		
Enter distribution (L, N or X) L L = lognormal			Value correspo to that percentil 62905.87 18748.95	•
	Use logno	rmal distribution.		
Recommendations:				
r-squared is: 0.91		r-squared is:	0.90	
ognormal distribution?		Normal distribution?		
		Max.	53500	
		Median Min.	21700 5670	
TOTAL	15	Std. devn.	18205.86	
Uncensored Censored	15 0	Mean Lognormal mean	25392.67 27100.53	
Number of samples		Uncensored values		

19353.85 26866.67 30984.62 33433.33 42766.67 48657.14

AI - CLARK COUNTY

N = normal X = neither (so use nonparametric method)	4 X 50th 129,787.65 47439.836 Coefficient of Variation = 0.39
L L = lognormal	90 52,276.91 52276.909 50th 32,446.91 57113.983
Enter distribution (L, N or X)	Value corresponding Enter percentile to that percentile is:
use i	lognormal distribution.
	la our amount all abuilta states
Recommendations:	
r-squared is: 0.95	r-squared is: 0.96
Lognormal distribution?	Normal distribution?
	Max. 54,550.00
	Min. 13,750.00
TOTAL 26	Std. devn. 11,296.38 Median 31,192.31
Censored 0	Lognormal mean 34,526.80
Uncensored 26	Mean 34,335.09
Number of samples	Uncensored values

10713.33 15233.33 16366.67 20066.67 21935.71 23192.86

AI - PUGET SOUND BASIN

Number of samples	Uncensored values
Uncensored 45	Mean 20,354.90
Censored 0	Lognormal mean 20,083.46
TOTAL 45	Std. devn. 12,018.80
	Median 17,900.00
	Min. 7,390.00
	Max. 84,900.00
Lognormal distribution?	Normal distribution?
r-squared is: 0.93	r-squared is: 0.62
Recommendations:	
Use log	gnormal distribution.
	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is:
akhiran P	90 32,581.66 32581.659
L = lognormal	50th 18,376.61 35406.154
N = normal	4 X 50th 73,506.44 29757.164
X = neither (so use nonparametric method)	Coefficient of Variation = 0.47

14885.71 20133.33 21914.29 23233.33 24266.67 26666.67 32578.57

AI - YAKIMA BASIN

Number of complex	Uncensored values	
Number of samples		00000 00
Uncensored 32	Mean	22263.39
Censored 0	Lognormal mean	22211.65
TOTAL 32	Std. devn.	8991.12
	Median	20800
	Min.	10650
	Max.	56550
Lognormal distribution?	Normal distribution?	
r-squared is: 0.97	r-squared is: 0	.82
Recommendations:		
Use logr	normal distribution.	
	V	alue corresponding
Enter distribution (L, N or X)	Enter percentile to	that percentile is:
	90	33379.65
L = lognormal	50th	20892.85
N = normal	4 X 50th	83571.39
X = neither (so use nonparametric method)	Coefficient of Var	istian = 0.20

8933.75 10622.5 12603.33 15066.67 15362.5 20536.67

AI - SPOKANE BASIN

N = normal X = neither (so use nonparametric method)	4 X 50th Coefficient of Va	61,523.50	
L L = lognormal	90 50th	21,376.01 15 380 88	21376.006° 22749.6662
Enter distribution (L, N or X)		that percenti	
		/alue correspo	
Use log	normal distribution.		
reconniciadione.			
Recommendations:			
r-squared is: 0.98	r-squared is: 0	.94	
Lognormal distribution?	Normal distribution?		
	Max.	25,850.00	
	Min.	8,933.75	
	Median	15,000.00	
TOTAL 27	Std. devn.	4,011.60	
Censored 0	Lognormal mean	15,842.05 15,854.55	
Number of samples Uncensored 27	<u>Uncensored values</u> Mean	45 942 DE	

AI - GROUP "E"

REGIONS "J","L","P","R"

	Uncensored values		• .
21		15 003 33	
		•	
		•	
		•	
	Max.	29,000.00	
	Normal distribution?	a sagag <mark>i</mark>	
	r-squared is: ().94	
Use logno	rmal distribution.		
	and the second s	/alue correspo	nding
	Enter percentile t	o that percenti	le is:
	90		25591.946
	50th	13,525.62	27971.405
	4 X 50th	54,102.46	23212 487
	21 0 21	0 Lognormal mean 21 Std. devn. Median Min. Max. Normal distribution? r-squared is: 0 Use lognormal distribution.	21

MTCAStat Background Calculations ARSENIC DATA

0.53 0.89		STATEWIDE DATA			
		DATA BASED ON GRAPHITE FURNACE ATO	MIC ABSORPTION (GFA)) ANALYSIS	
0.96	· · · · · ·				
1.1		Number of samples	Uncensored values		
1.1		Uncensored 142	Mear	3.82	
1.136667		Censored 0	Lognormal mean	3.77	
1.2		TOTAL 142	Std. devn		
1.245			Media	2.92	
1.3875			Min	. 0.50	
1.4			Max	. 28.60	
1.4					
1.44		Lognormal distribution?	Normal distribution	?	
1.45					
1.45		r-squared is: 0.98	r-squared is	: 0.64	
1.45					
1.49		Recommendations:			
1.5					
1.616667					
1.665					
1.7		Use loan	ormal distribution.		
1.715		CSC logi.			
1.713					
1.8					
1.8				Value correspon	ndina
1.8		Enter distribution (L, N or X)	Enter percentile	to that percentil	
1.8		L	90	6.99	6.9938
1.814286		L = lognormal	50ti		7.2116
1.014200		N = normal	4 X 50ti		6.7760
1.9		X = neither (so use nonparametric method)		Variation = 0.7	0.7700
1.95		A - Heither (so use nonparametric metriou)	Coefficient	Variation - 0.7	
1.975					
1.973					
2 2.12					
2.145					
2.15			residencia (il compresso della compresso della compresso della compresso della compresso della compresso della Compresso della compresso della compresso della compresso della compresso della compresso della compresso della		
2.15					
2.215					
2.25					
2.286667					
2.3					
2.3					
2.3					
2.32					
2.35					
2.43					
2.5					
2.5					1.3
2.515					
2.515 2.53					
2.515 2.53 2.535					
2.515 2.53 2.535 2.55					
2.515 2.53 2.535 2.55 2.55					
2.515 2.53 2.535 2.55 2.58 2.6					
2.515 2.53 2.535 2.55 2.58 2.6 2.6					
2.515 2.53 2.535 2.55 2.58 2.6 2.6 2.6					
2.515 2.53 2.535 2.55 2.58 2.6 2.6 2.6 2.65					
2.515 2.535 2.535 2.555 2.58 2.6 2.6 2.6 2.65					
2.515 2.53 2.535 2.55 2.58 2.6 2.6 2.6 2.65					
2.515 2.53 2.535 2.55 2.58 2.6 2.6 2.6 2.65 2.706667					
2.515 2.53 2.535 2.55 2.58 2.6 2.6 2.6 2.65 2.706667 2.74					

MTCAStat Background Calculations ARSENIC DATA

2.8 2.815 2.83 2.86 2.9 2.9 2.9 2.913333 2.916667 2.935 2.99 2.995 2.995 3.01 3.065 3.08 3.3 3.42 3.45 3.475 3,48 3.485 3.53 3.57 3.57 3.645 3.65 3.67 3.73 3.735 3.796 3.819286 3.862 4.0275 4.1 4.115 4.203333 4.215 4.25 4.274286 4.305 4.326 4.39 4.42 4.55 4.65 4.82 4.995 5.113333 5.16 5.195 5.26 5.28 5.415 5.54 5.55 5.583 5.585 5.818 6.034 6.12 6.41 6.453333

6.89

MTCAStat Background Calculations **ARSENIC DATA**

6.9275 7.19 7.625714 7.9475 8.01 8.12 8.42 8.53 8.615 8.635 8.99 9.397857 10.32571 17.16846 28.6

ARSENIC 90th = 7 MG/KG

1.7 1.8 1.9 1.9 2.32 2.6 2.8 2.9 3.48 4.55 4.65 8.12

8.99

As - GROUP "W"

DATA BASED ON GRAPHITE FURNACE ATOMIC ABSORPTION (GFAA) ANALYSIS WESTERN WASHINGTON, REGIONS A,C,D

Uncensored values
Mean 3.49
Lognormal mean 3.46
Std. devn. 2.26
Median 2.8
Min. 1.7
Ma x. 8.99
Normal distribution?
r-squared is: 0.75
en anno montre a la comercia como la comercia al comercia de en esperante de la comercia de la comercia de la c
parametric method.
Value corresponding
Enter percentile to that percentile is: 90 8.47
50th 2.80 4 X 50th 11.20

5

1.45 1.5 2 2.12 2.15 2.65 2.8 2.9 2.913333 2.995 3.01 3.08 3.42 3.67 3.796 4.115 4.42 5.195 5.54 5.583 6.034

6.89

As - CLARK COUNTY DATA BASED ON GRAPHITE FURNACE ATOMIC ABSORPTION (GFAA) ANALYSIS

Number of samples	Uncensored values	
Uncensored 22	Mean	3.56
Censored 0	Lognormal mean	3.58
TOTAL 22	Std. devn.	1.50
	Median	3.045
	Min.	1.45
	Max.	6.89
Lognormal distribution?	Normal distribution?	
r-squared is: 0.98	r-squared is: 0.9	94
Recommendations:		
Use log	normal distribution.	
		lue corresponding
Enter distribution (L, N or X)	•	that percentile is:
	90	5.81
L = lognormal	50th	3.26
N = normal	4 X 50th	13.05
X = neither (so use nonparametric method)	Coefficient of Varia	ntion = 0.47

1.45 1.616667 1.665 1.8 1.975 1.993333 2.145 2.15 2.215 2.3 2.35 2.535 2.83 2.86 2.935 2.99 3.735 3.819286 4.215 4.25 4.274286 4.326 5.585 5.818

8.615 9.397857 17.16846

As - PUGET SOUND BASIN DATA BASED ON GRAPHITE FURNACE ATOMIC ABSORPTION (GFAA) ANALYSIS

Number of comples	I Incompared values in 12 and 12 and 12
Number of samples	Uncensored values
Uncensored 27	Mean 3.96
Censored 0	Lognormal mean 3.85
TOTAL 27	Std. devn. 3.30
	Median 2.86
	Min. 1.45
	Max. 17.1684615
Lognormal distribution?	Normal distribution?
r-squared is: 0.92	r-squared is: 0.65
Recommendations:	
Use lo	gnormal distribution.
	GFAA ANALYSIS
	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is:
rajári se t erészísésésésésésésésésésésésésésésésésésé	90 7.30
L = lognormal	50th 3.24
N = normal	4 X 50th 12.94
	Coefficient of Variation = 0.7

As - YAKIMA BASIN DATA BASED ON GRAPHITE FURNACE ATOMIC ABSORPTION (GFAA) ANALYSIS

0.89 0.96

1.245					
1.3875					
1.715		Number of samples		<u>Uncensored values</u>	
1.8		Uncensored	30	Mean	3.73
1.8		Censored	0	Lognormal mean	3.44
1.814286		TOTAL	30	Std. devn.	4.90
1.95		A A A TOTAL OF A STATE OF THE S		Median	2.64333333
2.286667				Min.	0.89
2.3		And the second of the second o		Max.	28.6
2.43					1.7
2.5		Lognormal distribution?		Normal distribution?	
2.5					
2.58		r-squared is: 0.88		r-squared is:	0.39
2.706667					
2.815		Recommendations:			
2.916667					
2.995					
3.065					
3.475		r tight in the spirit is a bide jeu	ise nonp	parametric method.	
3.53					
3.57					
3.862	14.40.3				
4.203333				and the second	Value corresponding
4.39		Enter distribution (L, N or X)			to that percentile is:
4.82		x ``		90	5.13
5.16		L = lognormal		50th	2.64
.625714		N = normal		4 X 50th	10.57
28.6		X = neither (so use nonparametric method	d)	Coefficient of V	ariation = N/A

1.136667 1.45 2.3 2.515 2.55 2.74 2.75 3.3 3.45 3.485 3.645 4.0275 4.305 4.995 5.113333 5.26 5.415 5.55 6.41 6.453333 6.9275 7.9475 8.01 8.42 8.53

8.635 10.32571

As - SPOKANE BASIN DATA BASED ON GRAPHITE FURNACE ATOMIC ABSORPTION (GFAA) ANALYSIS

		•		
Number of samples		Uncensored values	Salt and salt	
Uncensored	27	Mean	5.02	
Censored	0	Lognormal mean	5.13	
TOTAL	27	Std. devn.	2.48	
		Median	4.995	
		Min.	1.13666667	
		Max.	10.3257143	
Lognormal distribution?		Normal distribution?		
r-squared is: 0.96		r-squared is:	0.96	
Recommendations:			• 1.4gr 135 la 1	
	Use lognor	mal distribution.		
			·	
i ya manangan ya kasanga manananga manangan katangan katangan katangan katangan katangan katangan katangan kat Katangan katangan ka			Value correspo	nding
Enter distribution (L, N or X)		Enter percentile	to that percenti	le is:
By the H $oldsymbol{L}$, which is $oldsymbol{M}_{i,j}$, $oldsymbol{M}_{i,j}$		90	9.34	
L = lognormal		50th	4.39	
N = normai		4 X 50th	17.54	
X = neither (so use nonparametric meth	od)	Coefficient of Va	ariation = 0.65	

Enter distribution (L, N or X)		to that percentile is:
	and the second s	Value corresponding
Use lo	gnormal distribution.	
Recommendations:	100	
r-squared is: 0.97	r-squared is:	0.91
Lognormal distribution?	Normal distribution?	
	Max.	7.19
	,	0.5
		2.53
TOTAL 21		1.83
Censored 0	Lognormal mean	2.80
Uncensored 21	Mean	2.70
Number of samples	Lincensored values	
EASTERN WASHINGTON, REGIONS J,L,P,F	*	
		ANALYSIS
	DATA BASED ON GRAPHITE FURNACE AT EASTERN WASHINGTON, REGIONS J,L,P,F Number of samples Uncensored 21 Censored 0 TOTAL 21 Lognormal distribution? r-squared is: 0.97 Recommendations: Use lo	Uncensored 21 Mean Censored 0 Lognormal mean TOTAL 21 Std. devn. Median Min. Max. Lognormal distribution? r-squared is: 0.97 r-squared is: Recommendations: Use lognormal distribution.

MTCAStat Background Calculations BERYLLIUM DATA

Value corresponding to that percentile is: **1.44** 0.59

1.4373 1.6116

1.2629

BERYLLIUM			
STATEWIDE DATA			
Number of samples		Uncensored values	
Uncensored	157	Mean	
Censored	8	Lognormal mean	
TOTAL	165	Std. devn.	0.49
i i i i i i i i i i i i i i i i i i i	100	Median	
		Min.	
		Max.	2.79
Lognormal distribution?		Normal distribution?	
Logilornal diotribation:		rtorriar dictribation.	
r-squared is: 0.98		r-squared is:	0.88
, oquared 15. 5.55		. 0444.04.0.	0.00
Recommendations:			
	Use logno	rmal distribution.	
			Value correspo
Enter distribution (L, N or X)		Enter percentile	to that percentil
L		90	1.44
L = lognormal		50th	
N = normal			
		4 X 50m	237
X = neither (so use nonparametric me	thod)	4 X 50th Coefficient of V	
X = neither (so use nonparametric me	thod)	4 X Suth Coefficient of V	
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		
X = neither (so use nonparametric me	thod)		

0.495 0.505 0.51 0.515

MTCAStat Background Calculations BERYLLIUM DATA

	DERTEION	
0.53		
0.53		
0.535		
0.54		
0.54		
0.544		
0.55		
0.58 0.58		
0.58		
0.585		
86667		
0.6		
0.605		마이트
0.61		
0.61		
62625		
0.635		
36429		
0.65		
0.65		
0.655		
63333		
0.665		
.6675		
0.67 .6825		
.6825 0.7		
0.7	이 보고 생생이 되고 가장이 되었다.	
0.7		
0.7		
0.71		
0.71		
0.72		
0.72		
23333		
0.73		
0.75		
0.75		
0.75		
0.77		
0.77		
0.77		
0.78 0.785		
0.765		
0.79		
0.815		
0.82		
0.82		
0.82		
0.825		
0.83		
0.84		
0.875		
0.875		
0.89		
0.89		
0.89		
0.09		
0.89		
0.89 0.905		
0.89 0.905 20714		
0.89		

MTCAStat Background Calculations BERYLLIUM DATA

1.02 1.030769 1.036667 1.044286 1.046667 1.075714 1.085 1.09 1.11 1.135 1.14 1.15 1.156667 1.21 1.245 1.31 1.335 1.36 1.38 1.4175 1.45 1.475 1.483333 1.483846 1.636667 1.723333 1.743333 1.79 1.815 1.87 1.92 1.94 1.955

yoneupent

0.89

Be - GROUP "W"

REGIONS A,C,D - WESTERN WASHINGTON

Number of samples			Uncensored values	
Uncensored	15		Mean	0.39
Censored	15			0.39
	_		Lognormal mean	
TOTAL	15		Std. devn.	0.26
			Median	0.4
			Min.	0.1
			Max.	0.89
Lognormal distribution?			Normal distribution?	
r-squared is: 0.89			r-squared is: 0.9	93
Recommendations:				
			en e	
	Use no	ormal d	istribution.	
			Val	lue corresponding
Enter distribution (L, N or X)		_		that percentile is:
N			90	0.75
,				
L = lognormal			50th	
N = normal			4 X 50th	1.56
X = neither (so use nonparametric met	hod)		Coefficient of Varia	ition = 0.73

0.305 0.585 0.75 1.02 1.030769 1.09 1.11 1.135 1.335 1.36 1.45 1.475 1.483333 1.483846 1.636667 1.723333 1.743333 1.79 1.815 1.87 1.92 1.94 1.955 1.99 2.155714

Be - CLARK COUNTY

X = neither (so use nonparametric method)	Coefficient of Variation = 0.35
N = normal	4 X 50th 5.72
L = lognormal	50th 1.43
N	90 2.07
Enter distribution (L, N or X)	Enter percentile to that percentile is:
	Value corresponding
eli englis di un participa de l' use r	normal distribution.
ACCOMMICHAGIONO.	
Recommendations:	
r-squared is: 0.83	r-squared is: 0.96
Lognormal distribution?	Normal distribution?
	IVIAX. 2.15571429
	Min. 0.305 Max. 2.15571429
	Median 1.47916667
TOTAL 26	Std. devn. 0.47
Censored 0	Lognormal mean 1.46
Uncensored 26	Mean 1.43
Number of samples	Uncensored values

Be - PUGET SOUND BASIN

0.185 0.23 0.23 0.243333 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.253333 0.256667 0.266154 0.27 0.27 0.291429 0.296667 <0.6 0.305 0.3125 0.32 0.3225 0.33 0.333333 0.35 0.366667 0.37 0.37 0.375 0.395 0.41 0.415 0.47 0.53 0.53 0.544 0.61 0.665 0.7 0.7 0.7 0.75 0.875

Number of samples	Unc	ensored values	
Uncensored 36		Mean	0.41
Censored 8	Li	ognormal mean	0.41
TOTAL 44		Std. devn.	0.18
		Median	0.35833333
		Min.	0.185
	·	Max.	0.875
Lognormal distribution?	Norm	nal distribution?	
r-squared is: 0.91		r-squared is:	0.82
Recommendations:			
Use lo	gnormal distribu	ition.	
			Value corresponding
Enter distribution (L, N or X)	Enter per		to that percentile is:
	90		0.61
L = lognormal		50th	0.35
N = normal		4 X 50th	1.40 ariation = 0.44
X = neither (so use nonparametric method)			

0.39 0.635 0.65 0.7 0.72 0.73 0.77 0.78 0.805 0.815 0.82 0.83 0.89 0.89 0.905 0.920714 0.95 0.98 1.036667 1.044286 1.046667 1.075714 1.085 1.15 1.156667 1.21 1.245 1.31 1.38

1.4175 1.97 2.79

Be - YAKIMA BASIN

Number of samples	Uncensored values	
Uncensored 32	Mean	1.03
Censored 0	Lognormal mean	1.03
TOTAL 32	Std. devn.	0.43
	Median	0.93535714
	Min.	0.39
	Max.	2.79
Lognormal distribution?	Normal distribution?	
r-squared is: 0.93	r-squared is:	0.76
Recommendations:		
in the first term of the second secon	ognormal distribution.	
		Value corresponding
Enter distribution (L, N or X)	Enter percentile	to that percentile is:
	90	1.57
L = lognormal	50th	0.97
N = normal	4 X 50th	3.88
X = neither (so use nonparametric method)	Coefficient of Va	ariation = 0.39

0.3775 0.476667 0.495 0.505 0.515 0.535 0.54 0.55 0.58 0.586667 0.605 0.62625 0.636429 0.655 0.663333 0.6675 0.67 0.6825 0.72 0.723333 0.75 0.785 0.82 0.82 0.825 0.875

0.89

Be - SPOKANE BASIN

Number of samples		Uncensored values	and segment of the first of
Uncensore	ed 27	Mean	0.65
Censore		Lognormal mean	0.65
TOTA	-	Std. devn.	0.13
	·-	Median	0.655
		Min	0.3775
		Max.	0.89
Lognormal distribution?		Normal distribution?	
r-squared is	s: 0.97	r-squared is: 0.9	98
Recommendations:			
	Use logno	ormal distribution.	
	· · · · · · · · · · · · · · · · · · ·	Va	lue corresponding
Enter distribution (L, N or X)		Enter percentile to	that percentile is:
aggist of Landau trail		90	0.84
L = lognormal		50th	0.64
N = normal		4 X 50th	2.55
X = neither (so use nonpara		Coefficient of Varia	

0.23 0.23 0.243333 0.253333 0.256667 0.266154 0.27 0.296667 0.305 0.3225 0.366667 0.41 0.415 0.47 0.544 0.665 0.875

Be - GROUP "E"REGIONS J,L,P,R - EASTERN WASHINGTON

Number of samples	Uncensored values	
Uncensored 17	Mean	0.38
Censored 0	Lognormal mean	0.38
TOTAL 17	Std. devn.	0.18
		0.305
	Min.	0.23
		0.875
Lognormal distribution?	Normal distribution?	
r-squared is: 0.90	r-squared is: 0.79	
Recommendations:		
Use loar	normal distribution.	
		orresponding
Enter distribution (L, N or X)		ercentile is:
	90	0.61
L = lognormal	50th	0.35
N = normal	4 X 50th	1.39
X = neither (so use nonparametric method)	Coefficient of Variation =	= 0.45

MTCAStat Background Calculations CADMIUM DATA

0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.125 0.125 0.14 0.155 0.155 0.155 0.18 0.185 0.185 0.19 0.2

0.215

CADMIUM STATEWIDE DATA

Enter percentile 90 50th	Value corresp to that percent 0.99 0.32	tile is: 0.989
	to that percent	tile is:
al distribution.		
r-squared is:	0.59	
Normal distribution?		
Max.	5.00	
Min.	0.49	
	0.62	
	0.63	
	Max. Normal distribution?	Mean 0.63 Lognormal mean 0.62 Std. devn. 0.58 Median 0.49 Min. 0.10 Max. 5.00 Normal distribution? r-squared is: 0.59

MTCAStat Background Calculations CADMIUM DATA

0.215 0.26 0.275 0.28 0.303333 0.3125 0.32 0.33 0.338571 0.34 0.34 0.35 0.35 0.36 0.365 0.365714 0.37 0.37 0.37 0.375 0.38 0.395 0.4 0.4 0.4 0.4 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 0.405 0.41 0.42 0.424 0.445 0.45 0.453333 0.458462 0.46 0.4625 0.465 0.483333 0.485 0.500714 0.505 0.515 0.525 0.535 0.535 0.54 0.566667 0.57 0.61 0.62 0.626667 0.629286

0.63

MTCAStat Background Calculations CADMIUM DATA

0.645 0.653333 0.66 0.665 0.665714 0.676667 0.676667 0.685 0.7 0.7 0.705 0.715 0.72 0.74 8.0 0.805 0.831429 0.836667 0.8425 0.87 0.92 0.937692 0.955385 0.97 1.06 1.06 1.1 1.2 1.2 1.225 1.225 1.25 1.275 1.294286

Prequency

<0.2

Cd - GROUP "W"

REGIONS A,C,D - WESTERN WASHINGTON

X = neither (so use nonparametric met	hod)	Coefficient of \	/ariation = N/A
N = normal		4 X 50th	0.40
_ = lognormal		50th	0.10
Enter distribution (L, N or X)		Enter percentile 90	to that percentile is:
		 	Value corresponding
	en de la companya de La companya de la co		
Review o	of data needed	d for background decision.	
Recommendations:			
r-squared is:		r-squared is:	
			and Communication (1995). The second of the
ognormal distribution?		Normal distribution?	
		Max.	N/A
		Min.	
TOTAL	14	Std. devn. Median	
Censored	14	Lognormal mean	
Uncensored	0 -	Mean	
Number of samples		Uncensored values	

0.155 0.42 0.445 0.485 0.505 0.535 0.62 0.7 0.705 0.715 0.74 0.805 0.836667 0.92 0.937692 0.955385 0.97 1.06 1.06 1.1 1.2 1.225 1.225 1.25 1.294286 1.3

Cd - CLARK COUNTY

X = neither (so use nonparametric met	hod)	Coeff	icient of Variat	ion = 0.54	
N = normal			4 X 50th	1.95	
L = lognormal			50th	0.49	
Enter distribution (L, N or X)		Enter percentil 90	e to ti	nat percentile is 0.93	
	5. ·	C-1		ue correspondir	
	Use log	normal distribution.			
Recommendations:			* 7		
r-squared is: 0.98		r-so	quared is: 0.89	•	
ognormal distribution?		Normal dis	tribution?		
				32857143	
			Min. Max. 1.	0.155	
				49202381	
TOTAL	32	in the second se	Std. devn.	0.27	
Censored	0	Lognor	mal mean	0.55	
Uncensored	32		Mean	0.55	
Number of samples		Uncensor	ed values		

0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.14 0.155 0.19 0.28 0.303333 0.34 0.365714 0.38 0.4 0.4 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 0.424 0.458462 0.566667 0.7 0.831429 1.2 2.933333 5

Cd - PUGET SOUND BASIN

lumber of samples		Uncensored value	<u>s</u>	
Uncensored	19	Mea	n 0.80	
Censored	25	Lognormal mea	n 0.73	
TOTAL	44	Std. devr	1.20	
		Media	n 0.4	
		Mir	n. Ö.1	•
		Max	ι. 5	
Lognormal distribution?		Normal distribution		
r-squared is: 0.81		r-squared is	s: 0.45	
	are censored	1 Nonnarametric method	l recommended	
	a are censored	d. Nonparametric method	I recommended.	
Recommendations: More than half the data	a are censored	d. Nonparametric method	I recommended.	
	a are censored	d. Nonparametric method	I recommended.	
More than half the data	a are censored		Value correspo	
More than half the data Enter distribution (L, N or X)	a are censored	Enter percentile	Value correspo to that percenti	
More than half the data Enter distribution (L, N or X) X	a are censored	Enter percentile 90	Value correspo to that percenti 0.77	
More than half the data Enter distribution (L, N or X)	a are censored	Enter percentile	Value correspo to that percentii 0.77 h 0.37	

0.155
0.185
0.26
0.275
0.32
0.33
0.35
0.35
0.365
0.37
0.37
0.4
0.405
0.45
0.46
0.483333
0.500714
0.515
0.525
0.61
0.629286
0.63
0.66
0.665
0.665714
0.676667
0.72
0.8
0.8425
0.87
1.275

1.328571

Cd - YAKIMA BASIN

Number of samples	Uncensored values	
Uncensored 32		
Censored	Lognormal mean	0.55
TOTAL 32	——————————————————————————————————————	
	Median	
	Min.	0.155
	Max.	1.32857143
Lognormal distribution?	Normal distribution?	
r-squared is: 0.98	r-squared is:	0.89
Recommendations:		
Use	e lognormal distribution.	
		34.1
		Value corresponding
Enter distribution (L, N or X)		to that percentile is:
rang pa t alah pada kacamatan	90	to that percentile is: 0.93
L L = lognormal	90 50th	to that percentile is: 0.93 0.49
Enter distribution (L, N or X) L L = lognormal N = normal	90	to that percentile is: 0.93 0.49 1.95

Background calculations

0.125 0.125 0.18 0.185 0.2 0.215 0.215 0.3125 0.338571 0.34 0.36 0.37 0.375 0.395 0.4 0.41 0.453333 0.4625 0.465 0.535 0.54 0.57 0.626667 0.645 0.653333 0.676667 0.685

Cd - SPOKANE BASIN

Number of samples	Uncensored values	
Uncensored 27	Mean	0.40
Censored 0	Lognormal mean	0.41
TOTAL 27	Std. devn.	0.17
	Median	0.395
	Min.	0.125
	Max.	0.685
Lognormal distribution?	Normal distribution?	
r-squared is: 0.93	r-squared is: 0.	96
Recommendations:		
Recommendations:		
Recommendations:		
	gnormal distribution.	
	gnormal distribution.	
	gnormal distribution.	
	V	alue corresponding
Use log	V: Enter percentile to	that percentile is:
Use log Enter distribution (L, N or X) L	Enter percentile to	that percentile is: 0.72
Use log Enter distribution (L, N or X) L L = lognormal	Enter percentile to 90 50th	that percentile is: 0.72 0.36
Use log Enter distribution (L, N or X) L	Enter percentile to	that percentile is: 0.72 0.36 1.44

Background calculations

<0.2

Cd - GROUP "E"

REGIONS "J", "L", "P", "R" - EASTERN WASHINGTON

				* * 1	
Number of sa	amples		Uncensored va	alues	
	Uncensored	0	· · · · · · · · · · · · · · · · · · ·	/lean N/A	
	Censored	21	Lognormal r	nean N/A	
	TOTAL	21		devn. N/A	
*:			Me	edian N/A	
				Min. N/A	
				Max. N/A	
	· · · · · · · · · · · · · · · · · · ·				*********
Lognormal di	stribution?		Normal distribu	tion?	
	r-squared is:		r-square	ed is:	
Recommend	ations:	of data nee	r-square		
Recommend	ations: Review		eded for background deci		•
Recommend	ations: Review	of data nee	eded for background deci		
Recommend	ations: Review		eded for background deci		
Recommend	ations: Review		eded for background deci		
Recommend	ations: Review		eded for background deci	sion.	ding
	ations: Review		eded for background deci	sion. Value correspond	
	ations: Review		eded for background deci	sion. Value correspond	
Enter distribu	ations: Review Ition (L, N or X)		eded for background deci	Value correspond to that percentile	
	ations: Review Ition (L, N or X)		eded for background deci	Value correspond to that percentile	

MTACAStat Background Calculations CHROMIUM DATA

2.555	CHROMIUM			
4.425	STATEWIDE			
4.5	principal de la companya de la comp			
5 6.1	Number of samples	Uncensored values		
6.31	Uncensored 166	Mean	23.37	
6.5675	Censored 0	Lognormal mean	22.51	
6.6	TOTAL 166	Std. devn.	24.10	
7.6		Median	18.42	
7.67		Min.	2.56	
8.44 8.8		Max.	235.00	
8.953333	Lognormal distribution?	Normal distribution?		
9.1 9.11	r-squared is: 0.95	r-squared is:	0.48	
9.235	Recommendations:			
9.94 10.1	Recommendations:			
10.535				
10.65				
10.8	Use log	normal distribution.		
10.8				
10.97667				
11.05333 11.4			Value correspo	ndina
11.4	Enter distribution (L, N or X)	Enter percentile	to that percentil	
11.45	L	90	41.88	0.0000
11.6	L = lognormal	50th	18.69	0.0000
11.6	N = normal	4 X 50th	74.76	0.0000
11.65	X = neither (so use nonparametric method)	Coefficient of	Variation = 0.7	3 1 1 1 1 1 1
11.73333				
11.78857 11.85				
12				
12.00286				
12.03333				
12.135				
12.2				
12.3375 12.6				
12.7				
12.85				
12.96				
13.025				
13.05				
13.15 13.15714				
13.15/14				
13.3				
14.25				
14.3				
14.3				
14.4 14.65				
14.8 14.8				
15				
15.4				
15.55		$\mathcal{L}_{ij} = \frac{e_{ij}}{2} + e_{ij$		
15.85				
16				
16 16				
16 16.1				
10.1				

MTACAStat Background Calculations CHROMIUM DATA

16.35	
16.36667	
16.385 16.45	
16.5	
16.7	
16.75	
16.8	
16.95 17.15	
17.15	
17.9	
17.95	
18.05	
18.1 18.1	
18.22857	
18.3	
18.3	
18.34286	
18.5 18.63333	.*
18.74286	
18.75	
18.775	
19	
19 19	
19.5	
19.92	
19.95	
20 20	
20.25	
20.25	
20.66667	
20.95	
21.15 21.225	
21.23333	
21.5	
21.7	
21.7 21.91538	
21.91536	
22	
22	
22	
22.06667 22.2	
22.5	
22.6	
22.625	
23	
23.11538 23.2	
23.26667	
23.37143	
23.825	
23.96667	
24 24	
24.35	
24.35385	

MTACAStat Background Calculations CHROMIUM DATA

24.4	
24.9	
25.1	
25.7	
26	
26.23333	
26.7	
27.35	•
28.2	
28.83333	
29.3	
30.3	
31.3	
31.46667	
• 31.6	
32	
33.225	
34.2	
35.3	
35.9	
36.9	
37.85	
38.4	
38.45	
41.2	
41.95	
45.2	
46.02857	
47.25	
47.75	
48.75	
49.12143	+ 4, - 1
51.5	
56.7	

10.1 11.4 12.2 14.8 16 25.1 26 26.7 32 34.2 41.2 45.2 51.5 56.7

163

Cr - GROUP "W"

REGIONS A,C,D - WESTERN WASHINGTON

Number of earning	Uncensored values	
Number of samples Uncensored 15	Mean 37.74	
Censored 0	Lognormal mean 37.08	
TOTAL 15	Std. devn. 37.68	
IOIAL 15	Median 26.7	
	Min. 10.1	
	Max. 163	
Lognormal distribution?	Normal distribution?	
r-squared is: 0.94	r-squared is: 0.62	
Recommendations:		
Use	lognormal distribution.	
	Value corresponding	
Enter distribution (L, N or X)	Enter percentile to that percentile is:	
	90 78.46	
L = lognormal	50th 28.18	
N = normal	4 X 50th 112.73	
X = neither (so use nonparametric method)	Coefficient of Variation = 0.95	

4.425 8.44 14.65 16.45 16.75 18.05 18.1 18.1 18.3 18.75 20.95 21.7 21.91538 22.06667 23.11538 23.2 23.26667 23.37143 23.825 23.96667 24.35 24.9 25.7 26.23333 27.35 28.83333

Cr - CLARK COUNTY

Number of samples	Uncensored values
Uncensored 26	Mean 20.64
Censored 0	Lognormal mean 21.09
TOTAL 26	Std. devn. 5.52
	Median 21.9910256
	Min. 4.425
	Max. 28.8333333
Lognormal distribution?	Normal distribution?
r-squared is: 0.69	r-squared is: 0.89
Recommendations:	
e a vege de Use no	nparametric method.
gantana en	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is:
	90 26.57
L = lognormal	50th 21.99
N = normal	4 X 50th 87.96
X = neither (so use nonparametric method)	Coefficient of Variation = N/A

12 14.25 16 16.36667 16.385 17.55 17.95 18.34286 18.74286 19 19 19 19.5 19.92 19.95 20 20.25 20.66667 21.15 21.225 21.5 21.7 22 22 22 22.2 22.5 22.6 22.625 23 24 24 24.35385 24.4 28.2 31.3 33.225 35.3 41.95 47.25

47.75 48.75 49.12143 79.05 235

Cr - PUGET SOUND BASIN

Number of samples	Uncensored values	
Uncensored 45	Mean	30.29
Censored 0	Lognormal mean	28.28
TOTAL 45	Std. devn.	33.54
	Median	22
	Min.	12
	Max.	235
Lognormal distribution?	Normal distribution?	
r-squared is: 0.75	r-squared is:	0.36
Recommendations:		
Use non	parametric method.	
		Value corresponding
Enter distribution (L, N or X)	The state of the s	to that percentile is:
	90	48.15
L = lognormal	50th	22.00
N = normal	4 X 50th	88.00
X = neither (so use nonparametric method)	Coefficient of V	ariation = N/A

2.555 7.67 11.6 11.73333 12.00286 12.135 12.96 13.15 13.15714 13.3 14.3 14.3 15 15.55 15.85 16.35 16.5 16.7 16.8 17.15 18.22857 18.5 18.63333 21.23333 22 30.3 31.46667 31.6 37.85 38.45 46.02857

110.3

Cr - YAKIMA BASIN

L = lognormal N = normal X = neither (so use nonparametric method)	4 X 50th 65.70 Coefficient of Variation = N/A
Enter distribution (L, N or X)	Value corresponding Enter percentile to that percentile is: 90 38.27 50th 16.43
Use no	onparametric method.
recommendations.	
r-squared is: 0.87	r-squared is: 0.57
Lognormal distribution?	Normal distribution?
	Max. 110.3
	Min. 2.555
TOTAL 32	Std. devn. 18.73 Median 16.425
Censored 0	Lognormal mean 21.41
Number of samples Uncensored 32	Mean 21.67
Number of complex	Uncensored values

4.5 6.31 6.5675 8.953333 9.235 9.94 10.535 10.65 10.97667 11.05333 11.45 11.6 11.65 11.78857 11.85 12.03333 12.3375 12.7 12.85 13.025 13.05 13.25 14.4 16 16.95 18.775 20.25

Cr - SPOKANE BASIN

Lognormal distribution?	Normal distribution?
Logilollia diodibadion.	
r-squared is: 0.90	r-squared is: 0.95
Recommendations:	
Use log	normal distribution.
	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is:
nie in de la company de la com	90 17.81
L = lognormal	50th 11.43
N = normal X = neither (so use nonparametric method)	4 X 50th 45.70 Coefficient of Variation = 0.36

5 6.1 6.6 7.6 8.8 9.1 9.11 10.8 10.8 11.4 12.6 15.4 16.1 17.9 18.3 20 29.3 35.9 36.9 38.4 71.3

Cr - GROUP "E" REGIONS J,L,P,R - EASTERN WASHINGTON

			and the second s		
Number of samples			Uncensored values	A. J. S. Sakari	
Uncensored	21		Mean	18.92	
Censored	0		Lognormal mean	18.74	
TOTAL	21		Std. devn.		
			Median	12.6	
			Min.	5	
			Max.	71.3	
Lognormal distribution?			Normal distribution?	(1778年 新) (1778年 新)	
r-squared is: 0.96		• :	r-squared is:	0.75	
Recommendations:	A				
	Use loa	normal c	listribution.		
	Use log	normal c	listribution.		
	Use log	normal c	listribution.		
	Use log	normal o	listribution.	Value corresponding	
Enter distribution (L, N or X)	Use log		listribution. ter percentile	Value corresponding to that percentile is:	
Enter distribution (L, N or X) L	Use log				
	Use log		ter percentile	to that percentile is: 37.80	
Enter distribution (L, N or X) L L = lognormal N = normal	Use log		ter percentile 90	to that percentile is: 37.80 14.69	

MTCATStat Background Calculations COPPER DATA

0.0000

0.0000

0.0000

000000		
COPPER STATEWIDE		
STATEWIDE		
Number of samples Uncensored	<u>Uncensored values</u> 166 Mean	20.46
Censored	0 Lognormal mean	20.46 19.75
TOTAL	166 Std. devn.	21.37
7017.2	Median	17.07
	Min.	4.00
	Max.	243.50
Lognormal distribution?	Normal distribution?	
r-squared is: 0.93	r-squared is: (0.41
Recommendations:		
	Use lognormal distribution.	
	Gae logitorriai distribution.	
		/alue corresponding
Enter distribution (L, N or X)	Enter percentile t	o that percentile is:
L	90	36.01 0
L = lognormal	50th	16.80
N = normal X = neither (so use nonparametric m	4 X 50th ethod) Coefficient of Va	67.19 0
~ - Heither (so use nonparametric m	eniou) Coemicient of Va	110001 - U.UJ
L		

MTCATStat Background Calculations COPPER DATA

14.45 14.6 14.6825 14.7 14.8 14.93333 15 15.23333 15.83538 15.8625 16 16 16.025 16.10714 16.2 16.3 16.35 16.4 17 17 17.13333 17.1625 17.3 17.3 17.56667 17.6 17.7 17.75 18 18.04286 18.1 18.15 18.25 18.55 18.55 18.61429 18.7 18.75 18.85 18.9 19.16667 19.5 19.6 19.63571 19.8 19.95 20.1 20.13333 20.2 20.3 20.5 20.65 20.7 21 21 21.03333 21.2 21.3 21.5 21.56667 21.9 22 22.33333

22.5

MTCATStat Background Calculations COPPER DATA

22.8 23.05 23.2 23.3 23.33846 23.5 23.825 24.4 24.6 24.9 24.9 25 25 25.15 25.3 25.4 25.65 25.725 27.03333 27.06667 27.3 28.7 29.03333 29.2 29.24 29.65 30.96667 32.03077 33.9 39.25 42.84286 50.15 50.9 51.71429

goneupent

4.33 4.4 5.04 5.18 5.2 6.23 7.2 8.05 18.7 22.5 23.2 24.4 33.9 50.9 99.4

Cu - GROUP "W"

REGIONS A,C,D - WESTERN WASHINGTON

N = normal X = neither (so use nonparametric method)	4 X 50th Coefficient of Var	50.99 iation = 1.56
L = lognormal	50th	12.75
	90	52.85
Enter distribution (L, N or X)		that percentile is:
	· · · · · · · · · · · · · · · · · · ·	alue corresponding
Use logn	ormal distribution.	
Recommendations:		
r-squared is: 0.90	r-squared is: 0	68
ognormal distribution?	Normal distribution?	
agnormal distribution?	Normal distribution?	
	Max.	99.4
	Min.	4.33
	Median	8.05
TOTAL 15	Std. devn.	25.52
Censored 0	Lognormal mean	21.14
Uncensored 15	Mean	21.24
Number of samples	Uncensored values	

9.71 10.695 11.95 12.795 13.95 14.23333 15.83538 17 17.56667 18.15 20.7 21.2 21.56667 22 23.05 23.3 23.33846 23.825 24.9 25 25.4 25.65 29.2 30.96667 39.25

51.71429

Cu - CLARK COUNTY

N = normal X = neither (so use nonparametric method)	4 X 50th 81.94 Coefficient of Variation = 0.42
L = lognormal	50th 20.49
	90 34.43
Enter distribution (L, N or X)	Value corresponding Enter percentile to that percentile is:
Use log	normal distribution.
Recommendations:	
r-squared is: 0.97	r-squared is: 0.87
Lognormal distribution?	Normal distribution?
	Max. 51.7142857
	Min. 9.71
	Median 21.7833333
TOTAL 26	Std. devn. 9.06
Censored 0	Lognormal mean 22.08
Uncensored 26	Mean 22.04
Number of samples	Uncensored values

Cu - PUGET SOUND BASIN

- 4
7.59
8.846667
8.973333
9
10
10.8
10.84933
11.235
11.66667
11.75
11.85
12
12.5
13
13.75
13.86667
14
14
14.075
14.3
14.6825
15
16.10714
17
17.6
18
18.04286
19.16667
19.5
19.8
20.3
20.65
21
21
24.9
25
25.3
29.24
29.65
32.03077
42.84286
64.55
86.65
243.5

Number of samples	Uncensored values
Uncensored 45	Mean 24.43
Censored 0	Lognormal mean 21.90
TOTAL 45	Std. devn. 36.38
	Median 15
	Min. 4
	Max. 243.5
Lognormal distribution?	Normal distribution?
r-squared is: 0.86	r-squared is: 0.36
Recommendations:	
Use no	nparametric method.
	Value correspond
	Enter percentile to that percentile
\mathbf{x}	90 36.36
L = lognormal	90 36.36 50th 15.00
\mathbf{x}	90 36.36

4.125 12.4 13.3 15.23333 16.2 16.4 17.13333 17.1625 17.7 17.75 18.1 18.55 18.55 18.61429 18.75 18.85 19.6 19.63571 20.1 20.13333 20.5 21.03333 21.3 21.5 22.33333 22.8 23.5 24.6 25.15

27.03333 27.06667 50.15

Cu - YAKIMA BASIN

Number of samples	<u>Uncensored values</u>	problems in the
	2 Mean	20.16
Censored	0 Lognormal mean	20.38
TOTAL	2 Std. devn.	
grand a water a fall of the first	Median	
	Min.	
agamentalisma ayan ayan ayan ayan ayan ayan ayan ay	Max.	50.15
Lognormal distribution?	Normal distribution?	
r-squared is: 0.74	r-squared is:	0.73
Recommendations:		
part to said Us	e nonparametric method.	
		Value corresponding
Enter distribution (L, N or X)	Enter percentile	to that percentile is:
	90	26.47
L = lognormal	50th	
N = normal	4 X 50th	·
X = neither (so use nonparametric method)	Coefficient of \	/ariation = N/A

4.045 5.415 7.415 10.8 10.96 11.46667 11.85 12.95 13 13.05 13.30714 13.35 13.5 . 14.14333 14.4 14.45 14.45 14.93333 15.8625 16.025 16.3 17.3 17.3 18.25 19.95 25.725

29.03333

Cu - SPOKANE BASIN

X = neither (so use nonparametric method)	Coefficient of Variation = 0.39
N = normal	4 X 50th 57.66
L = lognormal	50th 14.42
N. S.	90 21.61
Enter distribution (L, N or X)	Enter percentile to that percentile is:
	Value corresponding
n de la companya de La companya de la co	Jse normal distribution.
	1-2-2-3-3-1-4-3-4-3-3-3-3-3-3-3-3-3-3-3-3-3-3
Recommendations:	
r-squared is: 0.87	r-squared is: 0.91
	n amount in 0.04
Lognormal distribution?	Normal distribution?
	Max. 29.0333333
	Min. 4.045
	Median 14.1433333
TOTAL 27	7 Std. devn. 5.19
Censored (0 Lognormal mean 14.59
Uncensored 27	
Number of samples	Uncensored values

9.1 11.1 11.6 11.9 12.7 12.9 13.2 13.2 13.4 14.6 14.7 14.8 16 16 16.35 18.9 20.2 21.9 27.3 28.7 53

Cu - GROUP "E"

REGIONS J,L,P,R - EASTERN WASHINGTON

Number of samples	Uncensored values
Uncensored 21	Mean 17.69
Censored 0	Lognormal mean 17.49
TOTAL 21	Std. devn. 9.53
	Median 14.7
	Min. 9.1
	Max. 53
Lognormal distribution?	Normal distribution?
r-squared is: 0.87	r-squared is: 0.65
Recommendations:	
Asia di Santa di San	onparametric method.
<mark>aga kan sangga paga kan sangga kanang manang kanang kanang kanang kanang kanang kanang kanang kanang kanang kanan Kanang kanang kanan</mark>	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is:
	90 28.42
L = lognormal	50th 14.70
N = normal X = neither (so use nonparametric method)	4 X 50th 58.80 Coefficient of Variation = N/A

MTCAStat Background Calculations *IRON DATA*

25	IRON		
20 60	STATEWIDE		
70			
00	Number of samples	Uncensored values	
00	Uncensored 165	Mear	
00	Censored 0	Lognormal mear	
00	TOTAL 165	Std. devn	· · · · · · · · · · · · · · · · · · ·
00		Mediar	
00 20		Min	
per Personal		Max	. 112,500.00
	Lognormal distribution?	Normal distribution?	
	r-squared is: 0.98	r-squared is	: 0.83
	Recommendations:		
	Use log	normal distribution.	
			Value corresponding
	Enter distribution (L, N or X)	Enter percentile	to that percentile is:
	L	90	43,106.14 0.000
	L = lognormal	50th	
	N = normal	4 X 50th	
	X = neither (so use nonparametric method)		√ariation = 0.52
		()	

MTCAStat Background Calculations IRON DATA

MTCAStat Background Calculations IRON DATA

22400	
33100	
33250	
33350	
33566.67	
34500	
35050	
35450	
35700	
35933.33	
37253.85	
37450	
37757.14	
38400	
39566.67	
39600	
39662.5	
40400	
41650	
41700	
41800	
42200	
42825	
44700	
45633.33	
48625	
49900	
50200	
52550	
52850	
53800	
53933.33	
54950	
55571.43	
58050	

Fe - GROUP "W"

REGIONS J,L,P,R - WESTERN WASHINGTON

Number of samples	Uncensored values	
Uncensored 15	Mean 25557.33	
Censored 0	Lognormal mean 25757.52	
TOTAL 15	Std. devn. 16247.65	
	Median 18200	
	Min. 9160	
	Max. 62800	
Lognormal distribution?	Normal distribution?	
r-squared is: 0.96	r-squared is: 0.88	
Recommendations:		
Use logn	ormal distribution.	
	Value correspondir	
Enter distribution (L, N or X)	Enter percentile to that percentile is	
	90 49170.89	
_ = lognormal	50th 21446.18	
N = normal	4 X 50th 85784.73 Coefficient of Variation = 0.72	
K = neither (so use nonparametric method)		

26123.08 32733.33 35933.33 37253.85 39566.67 45633.33 53933.33 55571.43

Fe - CLARK COUNTY

Number of samples		Uncensored values	
Uncensored	26	Mean	40734.55
Censored	0	Lognormal mean	40923.09
TOTAL	26	Std. devn.	11005.31
		Median	38508.3333
		Min.	16350
	and the same of th	Max.	59850
Lognormal distribution?		Normal distribution?	
r-squared is: 0.93	*	r-squared is:	0.97
Recommendations:			
	Jse lognormal o	listribution.	
			Value corresponding
Enter distribution (L, N or X)	En	ter percentile	to that percentile is:
nakanaka Lubura dan Kalendar		90	58665.27
L = lognormal		50th	
N = normal		4 X 50th	
X = neither (so use nonparametric metho	(t	Coefficient of V	ariation = 0.32

13353.85 13533.33 14333.33

Fe - PUGET SOUND BASIN

Number of samples	Uncensored v	<u>values</u>
Uncensored	44	Mean 21680.05
Censored	0 Lognormal	mean 21082.33
TOTAL		devn. 16424.87
	N	Median 17050
n de la companya de La companya de la co		Min. 5920
		Max. 112500
Lognormal distribution?	Normal distrib	ution?
r-squared is: 0.85	r-squa	red is: 0.52
Recommendations:		
	Jse nonparametric method.	
		Value corresponding
Enter distribution (L, N or X)	Enter percentile	to that percentile is:
X	90	36128.57
L = lognormal		50th 17050.00
N = normal		X 50th 68200.00
X = neither (so use nonparametric metho	d) Coefficie	ent of Variation = N/A

5025

Fe - YAKIMA BASIN

16368.67
17200
20733.33
21350
21633.33
22033.33
22750
23150
23900
24550
26900
27071.43
27800
28300
28642.86
29000
30050
30350
30600
30935.71
31650
32600
33100
33566.67
35450
39600
39662.5
41700
44700
53800
58800
55000

Uncensored values	
Mean 29780.40	
Lognormal mean 30339.72	
Std. devn. 10562.32	
Median 28821.4286	
Min. 5025	
Max. 58800	
Normal distribution?	
r-squared is: 0.94	
rmal distribution.	
Volto corresponding	
Coefficient of Variation = 0.51	
	Mean 29780.40 Lognormal mean 30339.72 Std. devn. 10562.32 Median 28821.4286 Min. 5025 Max. 58800 Normal distribution? r-squared is: 0.94 Track Value corresponding to that percentile is: 90 51451.49 50th 27689.82 4 X 50th 110759.30

12517.5 13966.67 14662.5 16133.33 16735.71

Fe - SPOKANE BASIN

N = normal X = neither (so use nonparametric me	المحملا		4 X 50th Coefficient of Var	73112.65	
L = lognormal			50th	18278.16	
L L L N OI A)			90	25026.20	c 13.
Enter distribution (L, N or X)				/alue correspor o that percentil	
				falsa aamaa	- alim a
	U96 I	ognomi	ai นเอนามนแบท.		
	Liec I	oanor:	al distribution.		
TOOTHINGINGUIONO.					
Recommendations:					
r-squared is: 0.96			r-squared is: 0	0.98	
ognormal distribution?			Normal distribution?		
			Min. Max.	9670 27000	
			Median	18150	
TOTAL	27		Std. devn.	4172.08	
Censored	0		Lognormal mean	18783.35	
Number of samples Uncensored	27		<u>Uncensored values</u> Mean	18744.84	

Fe - GROUP "E" REGIONS J,L,P,R - EASTERN WASHINGTON

Number of sa	amples		Uncensored values	
	Uncensored	21	Mean	19935.71
	Censored	0	Lognormal mean	20046.16
	TOTAL	21	Std. devn.	5885.98
			Median	21300
			Min.	10400
			Max	30000
Lognormal di	stribution?		Normal distribution?	
	r-squared is: 0.94		r-squared is: 0	0.97
Recommend	ations:			ally with the control of
		Use lognorm	al distribution.	
•	en e			
				/alue corresponding
enter distribu	ition (L, N or X) L		Enter percentile to 90	o that percentile is: 29631.58
. = lognorma			50th	19027.40
V = normal			4 X 50th	76109.59
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

MTCAStat Background Calculations LEAD DATA

<2	LEAD
< <u>2</u>	STATEWIDE
<4	OTATEMBE
<4	
<4	Number of samples
<4	Und
<4 <4	C
<4	
<4	
<4	
<4	
<4 <4	Lognormal distributio
<4 <4	r-sq
2.1	1-64
2.125	Recommendations:
2.171429	
2.3	
2.3	
3.1 3.2	
3.8	
3.8	
3.875	
4	Enter distribution (L,
4	L
4.066667	L = lognormal
4.2 4.2	N = normal X = neither (so use n
4.25	A - Heither (so use if
4.25	
4.45	
4.5	
4.6	
4.65 4.7	
4.733333	
4.75	
4.8	
4.8625	
5	
5.133333	
5.133333 5.2	
5.233333	
5.25	
5.3	
5.3	
5.4	
5.4 5.4	
5.4 5.45	
5.5	
5.8	
5.9	
5.9 5.9	•
5.9 5.9 5.9	•
5.9 5.9	

6.033333 6.05 6.1

Number of samples	Uncensored values		
Uncensored 151	Mean	10.05	
Censored 15	Lognormal mean	9.26	
TOTAL 166	Std. devn.	16.83	
TOTAL 100	Median	7.90	
	Min	2.10	
	Max.	207.50	
			Y Service Control
Lognormal distribution?	Normal distribution?		
r-squared is: 0.91	r-squared is: 0.2	3	
Recommendations:			
Use logi	normal distribution.		
	Val	ue correspor	nding
Enter distribution (L, N or X)	Enter percentile to t	hat percentile	e is:
	90	17.09	0.000
L = lognormal	50th	6.98	0.000
N = normal	4 X 50th	27.92	0.000
X = neither (so use nonparametric method)	Coefficient of Varia	tion = 0.79	

MTCAStat Background Calculations *LEAD DATA*

6.1 6.1 6.2 6.35 . 6.4 6.433333 6.5 6.521429 6.55 6.6 6.65 6.7 6.7 6.728571 6.75 6.8 6.866667 7 7.05 7.166667 7.3 7.3 7.4 7.45 7.7 7.8 7.85 7.9 8 8 8.1 8.2 8.25 8.3 8.35 8.65 8.666667 8.733333 8.75 8.8 8.8 9.05 9.1 9.133333 9.185 9.5 9.5 9.657143 9.7 9.7 9.8 9.9 9.9 10 10 10.05 10.15 10.26 10.4 10.5 10.6 10.65 10.65 10.73333

MTCAStat Background Calculations *LEAD DATA*

10.77143	
10.8	
10.875	
10.975	
11	
11.09	
11.3	
11.5	
11.7	
12	
12	
12	
12.04385	
12.23333	
12.5	
12.5	
12.8	
12.83333	
12.9	
13.5	
13.5	
13.5	
13.7	
13.72667	그렇게 그 사는 그 그 사람들이 하는 사람들이 되었다는 그 사람들이 되었다는 것이 하는 것이 없는 것이다.
14.33333	
14.925	
15	
15.2	
15.66667	
15.77857	
15.975	
16	
16.2	
17.1	

frequency

LEAD 90th = 17.1 MG/KG

Pb - GROUP "W"

REGIONS A,C,D - WESTERN WASHINGTON

Number of samples	Uncensored values
Uncensored 15	
Censored 0	D Lognormal mean 5.68
TOTAL 15	5 Std. devn. 3.52
	Median 4
	Min. 2.1
	Max. 12
Lognormal distribution?	Normal distribution?
r-squared is: 0.94	r-squared is: 0.85
Recommendations:	
Use	e lognormal distribution.
	Value corresponding
Enter distribution (L, N or X) L	Enter percentile to that percentile is: 90 10.87
L = lognormal	50th 4.75
N = normal	4 X 50th 18.98
X = neither (so use nonparametric method)	Coefficient of Variation = 0.72

<2 4.65 5.45 5.5 6.7 7.3 7.45 7.7 8.3 8.65 8.733333 9.1 9.185 9.8 10.73333 10.77143 11.09 11.3 12.04385 12.23333 12.5 12.9 13.7 14.925 15.975 29.6

Pb - CLARK COUNTY

Number of samples		Uncensored values	e un filtri frens e Alex	
Uncensored	25	Mear	10.65	
Censored	1	Lognormal mear	10.63	
TOTAL	26	Std. devn	4.93	
		Mediar	9.8	
		Min	4.65	
		Max	. 29.6	
Lognormal distribution?		Normal distribution?		
r-squared is: 0.95		r-squared is	0.79	
Recommendations:			ngga ng kaga Marak	
ing a language of the state of	Jse lognorma	l distribution.		
			Value corresponding	
Enter distribution (L, N or X)		Enter percentile	to that percentile is:	
		90	16.83	
L = lognormal		50th		
N = normal	_	4 X 50th		
X = neither (so use nonparametric method	d)	Coefficient of \	/ariation = 0.47	

<4 <4 <4 <4 <4 <4 <4 <4 <4 2.125 3.8 4.25 4.25 4.45 4.6 4.733333 4.75 5.133333 5.233333 5.25 5.9 6.033333 6.1 6.521429 6.866667 7.9 8.2 9.9 10 10.15 10.26 10.975 13.5 13.5 13.72667 16.2 22.01538 29

29.47857 207.5

Pb - PUGET SOUND BASIN

L = lognormal N = normal K = neither (so use nonparametric method)	4 X 50	th 4.47 th 17.88 Variation = 2.14
	90	24.02
Enter distribution (L, N or X)	Enter percentile	Value corresponding to that percentile is:
Us	e lognormal distribution.	
Recommendations:		
r-squared is: 0.90	r-squared i	s: 0.37
Lognormal distribution?	Normal distribution	
	A1	
	Ma	
	Media Mi	
TOTAL 4		···
Censored 1	4 Lognormal mea	n 12.39
Number of samples Uncensored 3	<u>Uncensored value</u> Mea	

2.171429 3.875 4.066667 4.5 4.8625 5.133333 5.3 5.4 5.4 5.9 6.05 6.1 6.2 6.35 6.433333 6.5 6.55 6.65 6.728571 7 7.05 7.166667 7.3 7.4 7.85 8.1 8.25 9.133333 9.657143 9.7

15.2 17.1

Pb - YAKIMA BASIN

Number of samples		Uncensored values	
the state of the s	2	Mean	7.03
	0	Lognormal mean	7.04
	2	Std. devn.	2.90
		Median	6.525
		Min.	2.17142857
		Max.	17.1
Lognormal distribution?		Normal distribution?	
r-squared is: 0.92		r-squared is:	0.80
Recommendations:			
		We find the second seco	
s (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	se lognorm	al distribution.	
			Value corresponding
Enter distribution (L, N or X)		Enter percentile 1	o that percentile is:
garan da L andon de Alemania		90	11.00
L = lognormal	•	50th	6.56
N = normal		4 X 50th	26.24
X = neither (so use nonparametric method)		Coefficient of Va	riation = 0.42

6,75 7.8 8.35 8.666667 8.75 8.8 9.05 9.5 10.05 10.5 10.6 10.65 10.65 10.8 10.875 11 11.5 12 12.5 12.8 12.83333 13.5 14.33333 15 15.66667 15.77857

16

Pb - SPOKANE BASIN

Number of samples	Uncensored values
Uncensored 27	Mean 11.29
Censored 0	Lognormal mean 11.30
TOTAL 27	Std. devn. 2.55
	Median 10.8
	Min. 6.75
	Ma x. 16
Lognormal distribution?	Normal distribution?
r-squared is: 0.98	r-squared is: 0.97
Recommendations:	
Use log	normal distribution.
	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is:
	90 14.91
L = lognormal	50th 11.01
N = normal	4 X 50th 44.04
X = neither (so use nonparametric method)	Coefficient of Variation = 0.24

4.2 4.2 4.8 5 5.3 5.4 5.8 5.9 5.95 6 6.4 6.6 6.7 6.8 8 8 8.8 9.5 9.9 10.4 11.7

Pb - GROUP "E"REGIONS J.L.P,R - EASTERN WASHINGTON

Number of samples	•		Uncensore	d values		
Uncensored	21	. 3		Mean	6.9	92
Censored	0		Lognorm	nal mean	6.9	93
TOTAL	21		S	td. devn.	2.	11
				Median	6	6.4
				Min.	4	1.2
				Max.	11	.7
Lognormal distribution?			Normal dist	ribution?		
r-squared is: 0.97			r-sq	uared is:	0.93	
Recommendations:						
					•	
	Use	lognormal	distribution.			
		· · · · · · · · · · · · · · · · · · ·			Value corre	sponding
Enter distribution (L, N or X)		E	nter percentile	1	to that perce	entile is:
			90		9.8	
L = lognormal				50th	6.0	
N = normal				4 X 50th	26.	7.7
X = neither (so use nonparametric me	4111		O66		riation = 0.3	20

MTCAStat Background Calculations MANGANESE DATA

MANGANESE

STATEWIDE DATA

-	70
	78
	90
10	07
1.	12
141	4
- 14	49
1;	50
41	59
	J 9
10	63
164.4	45
183.66	67
100.00	0/
19	97
2	16
220 22	22
228.33	33
2	29
2	31
231	_
231	.5
2	33
2	34
00.4	
234	I.O
2	45
. 2	52
252.	
252.	/5
2	56
20	68
070	
276	າ.ວ
2	77
2	79
284.33	33
20	94
2	9 4
29	99
302.	25
3	03
اد	US
306	3.5
310).4
2	21
. 3	25
3.	40
2	45
350.57	14
354	1.5
361	_
3	63
3	65
3	66
_	
3	66
367.21	43
3	72
- 3	74
374	
376	3.5
3	77
	78
383.30	77
384.33	33
	86
387	7.5
390.8	75
392	2.5
	33

394.3333 396.5 411 417.4286

		· .		
Number of samples	•	Uncensored values		
Uncensored	166	Mean	592.56	
Censored	0	Lognormal mean	595.61	
TOTAL	166	Std. devn.	395.53	
		Median	509.58	
		Min.	78.00	•
		Max.	2,750.00	
Lognormal distribution?		Normal distribution?		
r-squared is: 0.99		r-squared is: 0).82	
Recommendations:				
	Use loan	ormal distribution.		
		\	/alue correspond	ding
Enter distribution (L, N or X)			o that percentile	
L		90	1,094.85	1094.8454
L = lognormal		50th	492.82	1111.1408
N = normal		4 X 50th	1,971.30	1078.5499
	ethod)		riation = 0.69	

MTCAStat Background Calculations MANGANESE DATA

420.7692 427.6667 430 436 445.5 446 454 461 463.3333 464.6667 470 473.75 475 486 488 493.5 494.5 499 505 509.5 509.6667 510 516 520.5 523 523 525.5 537 540.5 547.3333 555 557.3333 557.5 558 561 561.25 564.4286 565.6667 571 577.75 591.6667 599 607 611 613 631 631 633 638.3571 638.5 652 655 659 659.9286 665.5 667.5 671 679.5 680 708.5 716 738 740 741.5

MTCAStat Background Calculations MANGANESE DATA

753.5	
761	
763	
764.75	
769.5	
770.5	
786.5	
807.5	
818.5	
829.6667	
840	
846	
848	
902.5	
904.5	
926.5	
927	
930	
951	
951.6	
952.5	
983.75	
1008	
1042	
1077.25	
1110	
1119	
1192.154	
1210.857	
1291.5	
1375	
1483.333	
1525.5	
1546.125	

4 1

Mn - GROUP "W"

REGIONS A,C,D - WESTERN WASHINGTON

Number of complex	Uncompanyel velices
Number of samples	<u>Uncensored values</u>
Uncensored 15	Mean 329.27
Censored 0	Lognormal mean 335.74
TOTAL 15	Std. devn. 246.48
	Median 231
	Min. 78
	Max. 930
Lognormal distribution?	Normal distribution?
r-squared is: 0.98	r-squared is: 0.86
Recommendations:	
Use logi	normal distribution.
	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is:
	90 691.75
L = lognormal	50th 257.06
N = normal	4 X 50th 1028.24
X = neither (so use nonparametric method)	Coefficient of Variation = 0.9

150 231.5 420.7692 464.6667 509.5 659 665.5 667.5 807.5 829.6667 848 902.5 904.5 926.5 927 951 952.5 983.75 1042 1077.25 1110 1192.154 1483.333 1525.5 1836 1960.857

Mn - CLARK COUNTY

Number of samples		Uncensored values	
Uncensored	26	Mean	924.17
Censored	0	Lognormal mean	956.78
TOTAL	26	Std. devn.	432.53
AND THE STATE OF T	20	Median	915.5
		Min.	150
		Max.	1960.85714
		Teleph	1000.00711
Lognormal distribution?		Normal distribution?	
r-squared is: 0.89		r-squared is:	0.95
Recommendations:			
	* ·		
	Use norm	al distribution.	
	•		
			Value corresponding
Enter distribution (L, N or X)		Enter percentile	to that percentile is:
agaragia		90	1511.59
L = lognormal		50th	924.17
N = normal		4 X 50th	3696.68
X = neither (so use nonparametric meth	nod)	Coefficient of V	ariation = 0.5

90 141.4 163 183.6667 216 228.3333 234.5 252.75 276.5 284.3333 299 302.25 306.5 310.4 321 350.5714 361.5 365 367.2143 374.5 383.3077 387.5 473.75 499 509.6667 523 525.5 557.5 561 591.6667 607 659.9286 679.5 738 740 753.5 763 770.5 818.5 846 951.6 1291.5

1670 2170 2750

Mn - PUGET SOUND BASIN

	•	
Number of samples	Uncensored values	
Uncensored 45	Mean	592.21
Censored 0	Lognormal mean	584.83
TOTAL 45	Std. devn.	
	Median	473.75
	Min.	90
	Max.	2750
and and an artist and an artist and an artist and artist and artist and artist and artist artist artist artist		
Lognormal distribution?	Normal distribution?	
r-squared is: 0.98	r-squared is:	0.70
Recommendations:		A Particle System
Use	lognormal distribution.	
		#
er en		Value corresponding
Enter distribution (L, N or X) L	Enter percentile 90	to that percentile is: 1146.25
L = lognormal	50th	461.62
N = normal	4 X 50th	1846.48
X = neither (so use nonparametric method)	Coefficient of V	ariation = 0.81

164.45 384.3333 386 392.5 396.5 427.6667 486 488 493.5 494.5 510 520.5 540.5 547.3333 564.4286 565.6667 613 631 638.3571 671 680 708.5 716 741.5 761 786.5 840 1008 1119 1210.857 1375

1546.125

Mn - YAKIMA BASIN

Lognormal distribution?		Normal distribution?	
r-squared is: 0.94		r-squared is:	0.87
Recommendations:		708.96	
	Use lognorm	al distribution.	
	<u></u>		Value corresponding
Enter distribution (L, N or X)		Enter percentile	to that percentile is:
		90	to that percentile is: 1104.84
Enter distribution (L, N or X) L L = lognormal N = normal		90 50th	to that percentile is:

354.5 366 374 376.5 390.875 394.3333 417.4286 436 445.5 446 454 461 463.3333 470 475 505 555 557.3333 558 561.25 577.75 599 611 638.5 655 764.75

769.5

Mn - SPOKANE BASIN

Number of samples	Uncensored values
Uncensored 27	Mean 506.54
Censored 0	Lognormal mean 506.73
TOTAL 27	Std. devn. 114.86
	Median 470
	Min. 354.5
	Max. 769.5
Lognormal distribution?	Normal distribution?
r-squared is: 0.97	r-squared is: 0.94
Recommendations:	
l loo lo	ognormal distribution.
and the second of the second o	griorrial distribution.
	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is: 90 663.48
L = lognormal	50th 494.78
L = lognormal N = normal	4 X 50th 1979.12
	Coefficient of Variation = 0.23
X = neither (so use nonparametric method)	Coefficient of Variation - 0.23

Mn - GROUP "E"

REGIONS J,L,P,R - EASTERN WASHINGTON

Number of samples	Uncensored values
Uncensored	21 Mean 364.95
Censored	0 Lognormal mean 365.18
TOTAL	21 Std. devn. 117.77
	Median 345
	Min. 233
	Max. 652
Lognormal distribution?	Normal distribution?
r-squared is: 0.96	r-squared is: 0.91
Recommendations:	ه هم در در در در هم هم هم در در هم و منظم به این می این به هم به در در در این از در در در در در در در در در در در در د
	Use lognormal distribution.
	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is: 90 526.59
L = lognormal	50th 348.73
L – logriornal N = normal	4 X 50th 1394.92
X = neither (so use nonparametric metho	

MTCAStat Background Calculations *MERCURY DATA*

0.004	
0.004	
0.004	
0.004	
0.004	
0.004	
0.004	
0.004	
0.00425	
0.00475	
0.005	
0.0054	
0.00565	
0.006164	
0.00635	
0.0065	
0.0068	
0.007	
0.00725	
0.008	
0.008	
0.009	
0.009	
0.009475	
0.01	
0.01	
0.01	
0.01	
0.01	
0.0105	
0.0105	
0.01075	
0.011	
0.011	
0.011	
0.011	
0.011	
0.01195	
0.012	
0.012	
0.01225	
0.0123	
0.0125	
0.012667	
0.013	
0.013	
0.01375	
0.014	
0.014	
0.014063	
0.014333	
0.014625	
0.015	
0.0155	
0.016	
0.016143	
0.01625	
0.0165	
0.0168	
0.017	
0.0172	
0.017333	

0.017333 0.017714

MERCURY STATEWIDE DATA

		l la a ana ana di calcas		
Number of samples		<u>Uncensored values</u>		
Uncensored	166	Mean	0.03	
Censored	0	Lognormal mean	0.03	
TOTAL	166	Std. devn.	0.03	
		Median	0.02	
		Min.	0.00	
		Max.	0.19	
ognormal distribution?		Normal distribution?		
Logitornia diodibadion :	•	Homia diodibation.		A. T.
r-squared is: 0.99		r-squared is: 0.80		
Recommendations:				
	Liee logno	rmal distribution.		
	Ose logilo	irriai distribution.		
	·	Valu	e correspondi	ina
Enter distribution (L, N or X)			at percentile i	
L `i		90	0.07	0.065
. = lognormal	•	50th	0.02	0.248
N = normal		4 X 50th	0.09	-0.117
(= neither (so use nonparametric n	nethod)	Coefficient of Variati	on = 1 02	

MTCAStat Background Calculations MERCURY DATA

0.0185 0.018914 0.019 0.0192 0.02 0.02 0.02 0.0205 0.0205 0.0205 0.021 0.021 0.021 0.021 0.0215 0.021667 0.021779 0.022 0.0225 0.023 0.024 0.025 0.0256 0.025846 0.0265 0.0265 0.026667 0.027 0.0275 0.02775 0.028 0.028333 0.0285 0.0285 0.0285 0.029 0.0292 0.03 0.03 0.0302 0.030333 0.030464 0.031 0.031 0.031 0.0315 0.032 0.033 0.03325 0.033333 0.0345 0.035 0.0356 0.035667 0.036 0.0365 0.037333 0.038 0.04 0.0406 0.042 0.042 0.0425 0.04265

MTCAStat Background Calculations MERCURY DATA

0.043 0.043457 0.0445 0.04475 0.045 0.045033 0.0455 0.046 0.047 0.0475 0.047931 0.04974 0.051 0.052 0.052 0.05325 0.053633 0.05485 0.055 0.05635 0.05675 0.058 0.06 0.061 0.0631 0.065725 0.066833 0.07435 0.07595 0.076 0.077308 0.082 0.093 0.09395

0.009 0.009 0.01 0.011 0.011 0.021 0.031 0.038 0.042 0.045 0.055 0.061 0.093 0.119

0.185

*Hg - GROUP "W"*REGIONS A,C,D - WESTERN WASHINGTON

Number of samples		Uncensored values	
Uncensored	15	Mean	0.05
Censored	0	Lognormal mean	0.05
TOTAL	15	Std. devn.	0.05
		Median	0.038
		Min.	0.009
		Max.	0.185
Lognormal distribution?		Normal distribution?	
r-squared is: 0.94		r-squared is:	0.79
Recommendations:			
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Use lognorn	nal distribution.	
	g		

18 2			Value corresponding
Enter distribution (L, N or X)		Enter percentile 90	to that percentile is:
_ = lognormal		50th	0.03
N = normal		4 X 50th	0.03
K = neither (so use nonparametric metho	od)	Coefficient of Va	

0.0125 0.01375 0.0192 0.02 0.02 0.02 0.0205 0.0205 0.021 0.021667 0.022 0.0256 0.025846 0.026667 0.0285 0.0285 0.03 0.031 0.031 0.0315 0.033333 0.035 0.04 0.0425 0.0455

0.047931

Hg - CLARK COUNTY

Number of samples	Uncensored values		
Uncensored 26	Mean	0.03	
Censored 0	Lognormal mean	0.03	
TOTAL 26	Std. devn.	0.01	
	Median	0.02625641	
	Min.	0.0125	
	Max.	0.04793077	
Lognormal distribution?	Normal distribution?		
r-squared is: 0.97	r-squared is:	0.95	
Recommendations:	erante en electrica de la composição de la Composição de la composição de la composiç		
u jednosta i u jed	gnormal distribution.		
andre en manuel espera algebra de la companya de l Na companya de la co		Value corresponding	
Enter distribution (L, N or X)	Enter percentile	to that percentile is:	
	90	0.04	
L = lognormal	50th	0.03	
N = normal	4 X 50th	0.10	
X = neither (so use nonparametric method)	Coefficient of V	ariation = 0.37	

0.012 0.021779 0.0265 0.027 0.02775 0.028 0.0285 0.029 0.0292 0.03 0.0302 0.033 0.03325 0.0356 0.036 0.0365 0.037333 0.042 0.04265 0.043 0.043457 0.0445 0.04475 0.045033 0.046 0.047 0.0475 0.04974 0.052 0.052 0.05325 0.053633 0.05485 0.05635 0.05675 0.058 0.06 0.0631 0.065725 0.066833

0.07595 0.076 0.077308 0.09395 0.094407

Hg - PUGET SOUND BASIN

Censored TOTAL	0 45	Lognormal mean Std. devn.	0.05 0.02
IOIAL	45	Sta. devn. Median	0.02 0.04475
	· .	Min.	0.012
		Max.	0.09440714
Lognormal distribution?		Normal distribution?	
		•	
r-squared is: 0.97		r-squared is:	0.95
Recommendations:			
	Use lognorma	l distribution.	
The second secon			
		•	the state of the s
			Value company dis-
Enter distribution (L. N or X)		Enter percentile	Value corresponding to that percentile is:
Enter distribution (L, N or X)		Enter percentile	Value corresponding to that percentile is: 0.07
Enter distribution (L, N or X) L L = lognormal			to that percentile is:
	ŀ	90	to that percentile is: 0.07 0.04

0.00725 0.01 0.0105 0.011 0.011 0.0123 0.014 0.0155 0.016 0.016143 0.0165 0.017 0.017333 0.017714 0.018914 0.0205 0.021 0.023 0.024 0.0265 0.0275 0.028333 0.030333 0.030464 0.032 0.0345 0.035667 0.0406 0.051 0.07435 0.082

0.1165

Hg - YAKIMA BASIN

Number of samples			Uncensored val		
Uncensored	32			ean	0.03
Censored	0		Lognormal m		0.03
TOTAL	32		Std. de		0.02
				dian	0.02075
				Min.	0.00725
<u> </u>			<u> </u>	/lax.	0.1165
Lognormal distribution?			Normal distributi	on?	
r-squared is: 0.96			r-squared	dis: (0.71
Recommendations:					
	Use lo	ognormal	distribution.		
					Value corresponding
Enter distribution (L, N or X)		E	nter percentile	1 t	o that percentile is:
Walter Day Land Comment			90		0.05
L = lognormal				50th	0.02
N = normal			4 X 5	50th	0.09
X = neither (so use nonparametric meth	od)		Coefficient	of Va	riation = 0.75

0.00425 0.00475 0.0054 0.00565 0.006164 0.00635 0.0065 800.0 0.009475 0.0105 0.01075 0.01195 0.012 0.01225 0.012667 0.014 0.014063 0.014333 0.014625 0.01625 0.0168 0.0172 0.0185 0.019 0.0215 0.0225 0.1312

Hg - SPOKANE BASIN

Number of samples	Uncensored values	
Uncensored 27		
Censored 0	Lognormal mean	0.02
TOTAL 27		
	Median	0.01225
	Min.	0.00425
	Max.	0.1312
ognormal distribution?	Normal distribution?	
r-squared is: 0.85	r-squared is:	0.36
Recommendations:		
Use	nonparametric method.	
		Value corresponding
Enter distribution (L, N or X)	Enter percentile	to that percentile is:
X	90	0.02
. = lognormal	50th	0.01
N = normal	4 X 50th	
X = neither (so use nonparametric method)	Coefficient of V	Variation = N/A

0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.0068 0.007 0.008 0.01 0.01 0.01 0.011 0.013 0.013 0.015 0.021

0.025

Hg - GROUP "E"REGIONS J,L,P,R - EASTERN WASHINGTON

Number of samples	Uncensored values	4 20 35
Uncensored 21	<u>Oncensored values</u> Mean	0.01
Censored 0	Lognormal mean	0.01
TOTAL 21	Std. devn.	0.01
IOIAL 21	Stu. devn. Median	0.007
		0.007
	Min.	
	Max.	0.025
ognormal distribution?	Normal distribution?	
r-squared is: 0.89	r-squared is: 0.82	
Recommendations:		
lise por	nparametric method.	
Ose noi	iparametrio megrica.	
randing to the first of the second state of the second state of the second second second second second second s Second second		corresponding
Enter distribution (L, N or X)	Enter percentile to the	at percentile is:
X X	90	0.02
_ = lognormal	50th	0.01
V = normal	4 X 50th	0.03
v = normai		

MTCAStat Background Calculations NICKEL DATA

2.15	NICKEL		· · · · · · · · · · · · · · · · · · ·
4.6	STATEWIDE DATA		
4.9			
6.4		*	
7	Number of samples	Uncensored values	
7.1	1	66 Mean	
7.6	Censored	0 Lognormal mean	
7.7	TOTAL 10	66 Std. devn.	
7.8		Median Min.	
8.1 8.325		Max.	
8.55		IVIAX	244.30
8.7	Lognormal distribution?	Normal distribution?	
8.7	Logi loi mai distribution :	Normal distribution:	
9	r-squared is: 0.93	r-squared is:	0.44
9	r-squared is. 0.00	r-squared is.	0.44
9.2	Recommendations:		
9.2	resommendations.		
9.35			
9.466667			
9.5	U	se lognormal distribution.	
9.65			
9.7			
9.75			
9.8			Value corresponding
9.8	Enter distribution (L, N or X)	Enter percentile	to that percentile is:
9.85	L in the state of	90	38.19 38.1907
9.875	L = lognormal	50th	16.92 39.8195
10	N = normal	4 X 50th	67.68 36.5618
10.03333	X = neither (so use nonparametric method	l) Coefficient of \	/ariation = 0.71
10.05			
10.15			
10.3			
10.3			
10.36643			
10.65			
10.65			
10.7 10.7			
10.7			
11.2			
11.4			
11.7			
11.8			
11.9			
12			
12.05			
12.05			
12.2			
12.2			
12.3			
12.35		engan di kacamatan di Kabupatèn Baratan di Kabupatèn Baratan di Kabupatèn Baratan di Kabupatèn Baratan Baratan Kabupatèn Baratan Bara	
12.45			
12.55			
12.6			
12.65			
12.68571			
12.75			
12.9			
12.975			
13.25357			
13.55			

13.55

MTCAStat Background Calculations NICKEL DATA

```
13.76667
     14
    14.2
    14.3
14.32857
14.53333
   14.75
    14.8
   14.95
   15.35
    15.5
  15.775
15.96667
     16
16.06667
    16.1
    16.2
16.26667
   16.35
    16.4
16.46154
    16.5
    16.7
    16.7
     17
     17
17.06667
    17.3
   17.35
    17.4
    17.4
  17.975
     18
18.17143
    18.3
   18.35
    18.5
    18.6
    18.7
18.83333
    18.9
     19
   19.05
    19.1
    19.1
    19.1
    19.3
    19.3
    19.4
    19.6
20.26923
    20.8
   20.95
    21.5
    21.5
21.62857
    21.7
      22
      22
      22
22.13333
    22.3
22.33333
   22.75
```

MTCAStat Background Calculations NICKEL DATA

22.85 23 23 23.2 24 24 24.6 24.63333 24.66667 25 25 25.23333 25.24615 25.8 26.5 26.8 27.26667 28.95 29.9 31.3 34 34.1 34.95 36.3 36.86 38 39.8 40.36667 44.5 48.25 52.7 54.68571 57.45 63.2

7.6 8.7 9 10 10.3 11.9 14.2 19.1 19.6 22.3 26.8 31.3 39.8 63.2 91.1

Ni - GROUP "W"

REGIONS "A", "C", "D"

Number of samples	Uncensored values
Uncensored 15	Mean 25.66
Censored 0	Lognormal mean 25.38
TOTAL 15	Std. devn. 23.47
	Median 19.1
	Min. 7.6
	Max. 91.1
Lognormal distribution?	Normal distribution?
r-squared is: 0.94	r-squared is: 0.74
Recommendations:	
Use logi	normal distribution.
	Value corresponding
Enter distribution (L, N or X) L	Enter percentile to that percentile is: 90 54.19
L = lognormal	50th 19.12
N = normal	4 X 50th 76.46
X = neither (so use nonparametric method)	Coefficient of Variation = 0.97

7 9.35 12 12.6 12.65 12.75 13.55 13.76667 14.3 14.32857 14.75 15.96667 16.2 16.26667 16.46154 17.4 17.975 18.5 18.83333 18.9 19 19.05 19.3 20.26923 22.85

66.75

Ni - CLARK COUNTY

X = neither (so use nonparametric metho	od)			/ariation = N/A	
L = lognormal N = normal			50th 4 X 50th		
X III X			90	21.04	
Enter distribution (L, N or X)			Enter percentile	to that percentile is:	
				Value corresponding	
				*	
	Jse n	onpar	ametric method.		
Recommendations:					
			-7		
r-squared is: 0.79			r-squared is:	0.48	
Lognormal distribution?			Normal distribution?		
yang dan sanggan ang manang sagan sa sa kalabahan manang manang manang manah manang manang manang manang manan Tanggan sagan sagan sa sagan sa sagan sa sa sagan sa sagan sagan sagan sagan sagan sa sagan sa sagan sa sa sam		-	1700/.		
			Max.	· ·	
			Median Min.		
TOTAL	26		Std. devn.		
Censored	0		Lognormal mean		
Uncensored	26		Mean	17.72	
Number of samples			Uncensored values		

10.05 10.65 12.05 12.975 16 17 17.06667 17.35 18 18.17143 18.7 19.1 21.5 21.5 21.62857 21.7 22 22 22 22.33333 22.75 23 23 23.2 24 24.63333 24.66667 25 25 25.23333 25.24615 25.8 26.5 27.26667 29.9 34 34.95 36.3 36.86 44.5 52.7 54.68571 57.45

244.5

Ni - PUGET SOUND BASIN

Number of samples	Uncensored values	
Uncensored 45	Mean 29.82	
Censored 0		
TOTAL 45	Lognormal mean 27.94 Std. devn. 34.45	
IOIAL 45	Median 23	
	Min. 9	
	Max. 244.5	
	IVIAX. 244.5	
Lognormal distribution?	Normal distribution?	
r-squared is: 0.83	r-squared is: 0.35	
Recommendations:		
Use non	parametric method.	
	Value correspondin	
Enter distribution (L, N or X)	Enter percentile to that percentile is:	
X	90 47.78	
L = lognormal	50th 23.00	
N = normal	4 X 50th 92.00	
X = neither (so use nonparametric method)	Coefficient of Variation = N/A	

2.15 8.55 9.8 10.3 10.7 12.68571 12.9 13.25357 13.55 14.53333 14.8 14.95 15.35 15.5 16.06667 16.1 16.35 17.3 17.4 18.3 18.35 19.1 19.3 20.95 22.13333 24 28.95 38 40.36667 48.25 81.75714

163

Ni - YAKIMA BASIN

L = lognormal N = normal X = neither (so use nonparametric method)	50th 4 X 50th Coefficient of V	16.23 64.90 /ariation = N/A
Enter distribution (L, N or X)	Enter percentile 90	Value corresponding to that percentile is: 45.89
Use i	nonparametric method.	
Recommendations:		
r-squared is: 0.85	r-squared is:	0.49
ognormal distribution?	Normal distribution?	
r Albert Borres	Max.	163
	Median Min	16.225 2.15
TOTAL 32	Lognormal mean Std. devn.	29.11
Uncensored 32 Censored 0	Mean	24.83 23.73
Number of samples	Uncensored values	

4.6 4.9 8.1 8.325 8.7 9.2 9.466667 9.65 9.75 9.8 9.85 9.875 10.03333 10.15 10.36643 10.85125 11.4 11.8 12.05 12.2 12.35 12.45 12.55 15.775 16.4 16.7

18.6

Ni - SPOKANE BASIN

Number of samples	Uncensored values	
Uncensored 27	Mean 10.96	
Censored 0	Lognormal mean 11.01	
TOTAL 27	Std. devn. 3.20	
	Median 10.15	
	Min. 4.6	
	Max. 18.6	
Lognormal distribution?	Normal distribution?	
r-squared is: 0.90	r-squared is: 0.93	
Recommendations:		
Lise logn	ormal distribution.	
	Value corresponding	
Enter distribution (L, N or X)	Enter percentile to that percentile is:	
	90 16.19	
L = lognormal	50th 10.49	
N = normal	4 X 50th 41.96	
X = neither (so use nonparametric method)	Coefficient of Variation = 0.35	

6.4 7.1 7.7 7.8 9.2 9.5 9.7 10.65 10.7 11.2 11.7 12.2 12.3 14 16.5 16.7 17 19.4 20.8 24.6

34.1

Ni - GROUP "E"

REGIONS J,L,P,R - EASTERN WASHINGTON

N					
Number of samples			Uncensored values		
Uncensored	21		Mean		
Censored	0		Lognormal mean		
TOTAL	21		Std. devn.		
			Median	11.7	
			Min.	6.4	
Table Control			Max.	34.1	
Lognormal distribution?			Normal distribution?		
r-squared is: 0.97		* .	r-squared is:	0.85	
Recommendations:					:-
	Use l	ognorma	al distribution.		
				Value corresponding	
Enter distribution (L, N or X)		- 1	Enter percentile	to that percentile is:	
Spirit Language Signatur			90	22.41	
L = lognormal			50th	12.54	
N = normal			4 X 50th	50.14	
X = neither (so use nonparametric metho	d)		Coefficient of V	ariation = 0.48	

MTCAStat Background Calculations ZINC DATA

12 21.1 21.4 24.1 24.4 24.43333 24.6 26.3 27.5 28.6 28.66667 29 29.7 30.3 30.7 31 31.4 31.5 32.3 32.3 32.4 32.7 33 33.25 33.95 34 35.8 36.3 36.7 37.4 38 38 39 39.26667 39.4 39.6 39.7 40.61429 40.85 41 41.03333 41.05 41.7 42 42.2 42.4 42.4875 42.5 43 43.2 43.35 43.6 43.65 43.75 43.8 43.95385 44.05 44.25 44.3 44.3

44.5 44.5 44.7

ZINC STATEWIDE DATA

Number of samples		Uncensored values		
Uncensored	166	Mean	55.53	
Censored	0	Lognormal mean	55.68	
TOTAL	166	Std. devn.	21.55	
1017.2		Median	51.12	
		Min.	12.00	
		Max.	132.50	
Lognormal distribution?	•	Normal distribution?		
r-squared is: 0.99		r-squared is: 0.9	5	
Recommendations:				
	Use logn	normal distribution.		
		Vai	ue correspon	ding
Enter distribution (L, N or X)		Enter percentile to the	hat percentile	e is:
$\mathbf{L}_{i} = \{\mathbf{L}_{i}, \mathbf{L}_{i}, $		90	85.82	85.820
L = lognormal		50th	51.56	87.394
N = normal		4 X 50th	206.23	84.246
X = neither (so use nonparametric me	ethod)	Coefficient of Variat	ion = 0.41	

MTCAStat Background Calculations **ZINC DATA**

45 45.15 45.55 45.7 46.15 46.3 46.6 46.8 47.1 47.23333 47.575 47.65 47.95 48.15 48.50714 49.4 49.72143 50.35 50.4 50.89286 51.35 51.8 52.35 52.56667 52.575 52.7 53.05 53.3 53.35 53.6 53.8 53.9 54 54.15 54.6 54.75 55.65 55.9 56 56 56.4 56.85 58 58 58.3 58.45 58.46429 60.3 60.6 60.7 61.325 61.8 62.9125 63 63.1 64.3 66.15 67.1 67.16667 67.45 67.86667 68.1 68.4

69.45

MTCAStat Background Calculations *ZINC DATA*

70.8	
71	
71	
71.38571	
74.9	
75.2	
75.4	
76.4	
77.1	
77.43333	
77.9	
78.1	
78.85	
79.9	
81.45	
82	
82.3	
83.8	
84.5	
84.68462	
86	
89.33333	
89.4	
89.51538	
90.5	
90.7	
92.1	
92.2	
92.5	
93	
94.17143	
94.75	
97.3	
97.7	

21.1 24.1 24.4 24.6 27.5 36.7 42.4 44.5 45 53.8 54 63 63.1 86

116

Zn - GROUP "W"

REGIONS A,C,D - WESTERN WASHINGTON

Number of samples		Uncensored values	
Uncensored	15	Mean	48.41
Censored	0	Lognormal mean	48.66
TOTAL	15	Std. devn.	26.17
		Median	44.5
		Min.	21.1
		Max.	116
Lognormal distribution?		Normal distribution?	
r-squared is: 0.96		r-squared is: 0.8	37
Recommendations:			
	Use logn	ormal distribution.	
			lue corresponding
Enter distribution (L, N or X) L		Enter percentile to	that percentile is: 85.56
L = lognormal		50th	42.85
N = normal		4 X 50th	171.39
X = neither (so use nonparametric me	thod)	Coefficient of Varia	ation = 0.58

21.4 33.95 56.85 58 64.3 66.15 67.1 67.86667 69.45 71.38571 74.9 76.4 77.1 79.9 83.8 84.5 84.68462 89.33333 89.51538 92.1 92.2 92.5 93 94.75 97.3 97.7

Zn - CLARK COUNTY

Number of samples		Uncensored values		
Uncensored	26	Mean	76.01	
Censored	0	Lognormal mean	77.04	
TOTAL	26	Std. devn.	18.79	
		Median	78.5	
	*	Min.	21.4	
		Max.	97.7	
Lognormal distribution?		Normal distribution?		
r-squared is: 0.	72	r-squared is:	0.88	
Recommendations:				
	l lee nonna	rametric method.		
	Ose Horipe	namenic metrou.		
			Value corresponding	
Enter distribution (L, N or X)			to that percentile is:	
X		90	95.52	
L = lognormal		50th		
N = normal		4 X 50th		
X = neither (so use nonparametr	ic method)	Coefficient of V	ariation = N/A	

12 24.43333 28.6 28.66667 29 31 32.3 32.3 32.7 33 33.25 34 35.8 36.3 38 38 39 40.61429 41.7 42.5 43 43.35 43.65 43.95385 44.5 45.15 46.8 47.65 52.35 52.575 54.15 54.6 56 58 58.45 67.16667 71 78.1 81.45

82 89.4 90.5 99 116.75 132.5

Zn - PUGET SOUND BASIN

Number of samples		Uncensored values		
Uncensored	45	Mean	51.45	
Censored	0	Lognormal mean	51.50	
TOTAL	45	Std. devn.	24.93	
		Median	43.65	
		Min.	12	
		Max.	132.5	
Lognormal distribution?		Normal distribution?		
r-squared is: 0.95		r-squared is:	0.86	
Recommendations:				
i va ka je i i i kalazivi u	Use lognormal	distribution.		
	_			
	_		Value correspo	
Enter distribution (L, N or X)	E	nter percentile	to that percentil	e is:
		90	85.06	
L = lognormal	1.0	50th		
N = normal		4 X 50th		
X = neither (so use nonparametric metho	a)	Coefficient of	Variation = 0.5	

39.26667 40.85 41.03333 43.6 43.75 44.3 44.7 45.55 45.7 46.6 47.23333 48.50714 49.72143 50.4 51.35 52.7 53.05 53.6 54.75 55.9 58.46429 60.3 60.6 60.7 62.9125 68.1 75.2 77.43333 78.85 90.7 94.17143

101.4333

Zn - YAKIMA BASIN

Number of samples	Uncensored values
Uncensored	32 Mean 57.54
Censored	0 Lognormal mean 57.48
TOTAL	32 Std. devn. 16.18
	Median 52.875
	Min. 39.266667
	Max. 101.433333
Lognormal distribution?	Normal distribution?
r-squared is: 0.93	r-squared is: 0.86
Recommendations:	
	I last tampement disability disa
	Use lognormal distribution.
again a garaga an an	Value corresponding
Enter distribution (L, N or X)	Enter percentile to that percentile is:
	90 78.71
L = lognormal	50th 55.66
N = normal	4 X 50th 222.65
X = neither (so use nonparametric met	thod) Coefficient of Variation = 0.28

29.7 41.05 42 42.4875 43.2 44.05 44.25 44.3 46.15 46.3 47.575 48.15 50.35 50.89286 51.8 52.56667 53.3 53.35 53.9 55.65 56 61.325 61.8 67.45 68.4 70.8 71

Zn - SPOKANE BASIN

N = normal X = neither (so use nonparametric met	hod)	4 X 5	
Enter distribution (L, N or X) L L = lognormal		Enter percentile 90	Value corresponding to that percentile is: 66.35
	Use logno	rmal distribution.	
Recommendations:			
r-squared is: 0.95		r-squared	is: 0.95
Lognormal distribution?		Normal distribution	on?
			lin. 29.7 ax. 71
	 		ian 50.8928571
Censored TOTAL	0 27	Lognormal me Std. de	
Uncensored	27	Me	ean 51.77
Number of samples	j.	Uncensored value	IPS

26.3 30.3 30.7 31.4 31.5 32.4 37.4 39.4 39.6 39.7 41 42.2 43.8 47.1 47.95 49.4 56.4 58.3 75.4 77.9 82.3

Zn - GROUP "E"

REGIONS J,L,P,R - EASTERN WASHINGTON

Number of samples		Uncensored values	
Uncensored	21	Mean	45.74
Censored	0	Lognormal mean	45.73
TOTAL	21	Std. devn.	16.11
		Median	41
		Min.	26.3
		Max.	82.3
Lognormal distribution?		Normal distribution?	
r-squared is: 0.95	a.	r-squared is:	0.87
Recommendations:			Bolder (Marchaeller)
	Use lognorm	nal distribution.	
ya iya xaya xa da da			Value corresponding
Enter distribution (L, N or X) L		Enter percentile 190	to that percentile is: 67.47
L = lognormal		50th	43.40
N = normal		4 X 50th	173.60
	thod)	Coefficient of Va	

	Number of samples	Uncensored values
2	Uncensored 33	Mean 0.43
<u>.</u>	Censored 0	Lognormal mean 0.43
	TOTAL 33	Std. devn. 0.13
,		Median 0.37
j		Min. 0.24
		Max. 0.75
	Lognormal distribution?	Normal distribution?
•		
•	r-squared is: 0.91	r-squared is: 0.84
'		
	Recommendations:	
t - ²		
professional contraction of the	Use logi	normal distribution.
		Value corresponding
	Enter distribution (L, N or X)	Enter percentile to that percentile is:
rt eft e		90 0.61
	L = lognormal	50th 0.41
	N = normal	4 X 50th 1.64
	X = neither (so use nonparametric method)	Coefficient of Variation = 0.31

MTCAStat Background Calculations BARIUM DATA

Ba - SPOKANE BASIN

ALL DATA

47.6

Number of samples		Uncensored values	
Uncensored 72	2 , , , ,	Mean	164.29
Censored)	Lognormal mean	164.87
TOTAL 72	2	Std. devn.	63.96
		Median	157.5
		Min.	47.6
		Max.	471
Lognormal distribution?		Normal distribution?	
r-squared is: 0.95		r-squared is: 0	0.87
Recommendations:			
		•	
Use the state of t	e lognorma	ll distribution.	
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		/alue corresponding
Enter distribution (L, N or X)	l		o that percentile is:
		90	254.97
L = lognormal		50th	
N = normal		4 X 50th	613.11
X = neither (so use nonparametric method)		Coefficient of Va	riation = 0.41

NOTE: Ba DATA COLLECTED IN SPOKANE BASIN ONLY, BACKGROUND VALUE MAY NOT BE REPRESENTATIVE OF STATEWIDE CONCENTRATIONS.

MTCAStat Background Calculations BARIUM DATA

MTCAStat Background Calculations CALCIUM DATA

Ca - SPOKANE BASIN

ALL DATA

Lognormal distribution?	Normal distribution?	
r-squared is: 0.63	r-squared is: (0.23
Recommendations:	and the second s	
Use non	parametric method.	
		/alue corresponding
Enter distribution (L, N or X)		o that percentile is:
X	90	5493.00
L = lognormal	50th	3210.00
N = normal	4 X 50th	12840.00
X = neither (so use nonparametric method)	Coefficient of Va	mindian - AI/A

NOTE: Ca DATA COLLECTED IN SPOKANE BASIN ONLY. BACKGROUND VALUE MAY NOT BE REPRESENTATIVE OF STATEWIDE CONCENTRATIONS.

MTCAStat Background Calculations CALCIUM DATA

MTCAStat Background Calculations COBALT DATA

Co - SPOKANE BASIN

ALL DATA

3.29

3.47 3.95 4.87 5.06 5.31 5.38 5.45 5.47 5.49 5.5 5.56 5.68 5.85 5.94 5.94 6.01 6.05 6.24 6.41 6.42 6.49 6.55 6.57 6.58 6.67 6.72 6.76 6.98 7 7.05

7.07 7.15

7.29 7.33 7.36 7.37 7.39 7.43 7.45 7.59 7.64 7.75 7.9 8.15 8.32 8.38 8.4 8.5 8.63 8.64 8.65 8.7 8.81 8.91 9.11 9.19 9.72 9.91 10.2 10.3 10.3 10.5

Number of samples		Uncensored values		
Uncensored	72	Mean	7.82	
Censored	0	Lognormal mean	7.82	
TOTAL	72	Std. devn.	2.52	•
		Median	7.365	
		Min.	3.29	
		Max.	19.2	
Lognormal distribution?		Normal distribution?		
r-squared is: 0.98		r-squared is: 0.9)	
Recommendations:				
	Use logno	rmal distribution.		
				
		Val	ue corresponding	
Enter distribution (L, N or X)			nat percentile is:	
<u> </u>		90	11.15	
L = lognormal		50th	7.47	
N = normal		4 X 50th	29.88	
X = neither (so use nonparametric me	thod)	Coefficient of Variation	ion = 0.32	

NOTE: Co DATA COLLECTED IN SPOKANE BASIN ONLY. BACKGROUND VALUE MAY NOT BE REPRESENTATIVE OF STATEWIDE CONCENTRATIONS.

MTCAStat Background Calculations COBALT DATA

10.5 10.6 10.7 11.4 12.1 12.3 12.4 13.4 19.2

MTCAStat Background Calculations MAGNESIUM DATA

Mg - SPOKANE BASIN

ALL DATA

Number of samples		Uncensored values		
Uncensored	69	Mean	244.01	
Censored	0	Lognormal mean	209.37	
TOTAL	69	Std. devn.	442.14	
		Median	176	
		Min.	72.8	
		Max.	3520	
Lognormal distribution?		Normal distribution?		
r-squared is: 0.78		r-squared is: 0.	26	
Recommendations:	, in 			
	l leo nonn	parametric method.		
	OSE HOUL	diametric metricu.	• 1	
		Value corresponding		
Enter distribution (L, N or X)			that percentile is:	
X		90	298.00	
L = lognormal		50th	175.00	
N = normal		4 X 50th	700.00	
X = neither (so use nonparametric method)		Coefficient of Variation = N/A		

NOTE: Mg DATA COLLECTED IN SPOKANE BASIN ONLY. BACKGROUND VALUE MAY NOT BE REPRESENTATIVE OF STATEWIDE CONCENTRATIONS.

72.8 74.5

75.8 85.9 90.1 91.7

MTCAStat Background Calculations MAGNESIUM DATA

MTCAStat Background Calculations

		**		ETECTION LIMIT
	Number of samples		Uncensored value	
	Uncensored	50	Mea	
	Censored	0	Lognormal mea	
	TOTAL	50	Std. dev	
			Media	
			Mi	
			<u>Ma</u>	x. 7.6
	Lognormal distribution?		Normal distribution	n ?
	r-squared is: 0.91		r-squared i	s: 0.82
	Recommendations:			
		Han Inger		
		Use lognor	mal distribution.	
				Value come an en dia e
	Enter distribution (L, N or X)		Enter percentile	Value corresponding
• .	L		enter percentile 90	to that percentile is: 5.20
	L = lognormal		50	
	N = normal		4 X 50	
	X = neither (so use nonparametric met	thad)		of Variation = 0.2
	X - Heitrier (30 dae Horiparametric mer	niou)	Coemolenic	or variation - 0.2

MTCAStat Background Calculations

* SELENIUM 0.4 * STATEWIDE DATA - BACKGROUND CALCULATION BASED ON THOSE VALUES 0.41 **EXCEEDING DETECTION LIMIT ("AA" ANALYSIS)** 0.44 0.45 0.47 Number of samples **Uncensored values** 0.57 0.51 Uncensored 14 Mean Censored 0 Lognormal mean 0.57 0.51 0.54 TOTAL 14 Std. devn. 0.15 0.59 Median 0.525 0.4 0.62 Min. 0.84 0.74 Max. 0.74 0.77 Lognormal distribution? Normal distribution? 0.84 r-squared is: 0.95 r-squared is: 0.92 Recommendations: Use lognormal distribution. Value corresponding Enter distribution (L, N or X) to that percentile is: Enter percentile 90 0.78 0.56 L = lognormal 50th 4 X 50th 2.23 N = normal

Coefficient of Variation = 0.27

X = neither (so use nonparametric method)

MTCAStat Background Calculations TITANIUM DATA

Ti - SPOKANE BASIN

ALL DATA

Number of samples		Uncensored values	
	72	Mean	681.60
Censored	0	Lognormal mean	683.68
TOTAL	72	Std. devn.	311.17
		Median	631.5
		Min.	131
		Max.	2130
Lognormal distribution?		Normal distribution?	
		· · · · · · · · · · · · · · · · · · ·	2.00
r-squared is: 0.94		r-squared is:	J.82
Recommendations:			
	ise iognori	mal distribution.	
			Value corresponding
Enter distribution (L, N or X)			to that percentile is:
		90	1109.73
L = lognormal		50th	623.62
N = normal		4 X 50th	2494.48
X = neither (so use nonparametric method	i)	Coefficient of Va	riation = 0.47

NOTE: TI DATA COLLECTED IN SPOKANE BASIN ONLY. BACKGROUND VALUE MAY NOT BE REPRESENTATIVE OF STATEWIDE CONCENTRATIONS.

MTCAStat Background Calculations *TITANIUM DATA*

MTCAStat Background Calculations VANADIUM DATA

V - SPOKANE BASIN

ALL DATA

Number of samples		Uncensored values	
Uncensored	72	Mean	28.15
Censored	0	Lognormal mean	28.06
TOTAL	72	Std. devn.	13.57
		Median	24.25
		Min.	8.23
		Max.	80.5
Lognormal distribution?		Normal distribution?	•
r-squared is: 0.98		r-squared is: 0.8	6
Recommendations:			
	Use lognor	nal distribution.	
		Valu	ue corresponding
Enter distribution (L, N or X)			hat percentile is:
L L		90	45.04
L = lognormal		50th	25.56
N = normal		4 X 50th	102.25
X = neither (so use nonparametric me	ethod)	Coefficient of Variati	on = 0.46

NOTE: VANADIUM DATA COLLECTED IN SPOKANE BASIN ONLY. BACKGROUND VALUE MAY NOT BE REPRESENTATIVE OF STATEWIDE CONCENTRATIONS.

12.6	
13.4	
14.1	
14.9	
15	
15.1	
15.3	
15.9	
16.6	
17	
17.4	
17.9	
18	
18	
18.3	
18.3	
18.6	
19.2	
19.6	
19.6	
19.7	
19.7	
19.8	
19.9	
20.1	
20.8	
24.5	
21.5	
21.6	
21.9	
22	
22	
22	
22.6	
23.1	
23.3	
23.3 23.7	
23.7	
24.8	
25.3	
25.7	
25.9)
26.5	
26.6	;
26.9	
26.8	
27.3	; ;
27.3	; ;
27.3 27.6	
27.6 27.6 27.6	
27.6 27.6 27.6	
27.3 27.6 27.6 27.7	
27.3 27.6 27.6 27.7 29.4	: :
27.3 27.6 27.6 27.7	: :
27.3 27.6 27.6 27.7 29.4	
27.3 27.6 27.7 29.4 30 31.6	
27.3 27.6 27.6 27.7 29.4	
27.3 27.6 27.6 27.7 29.4 30 31.6 32.1	
27.3 27.6 27.6 27.7 29.4 30 31.6 32.1 32.3	
27.3 27.6 27.7 29.4 30 31.6 32.1 32.3 33.3	
27.3 27.6 27.7 29.4 30 31.6 32.1 32.3 33.3	
27.3 27.6 27.6 27.7 29.4 30 31.6 32.1 32.3 33.3 33.8	
27.3 27.6 27.6 27.7 29.4 30 31.6 32.1 32.3 33.3 34.7	
27.3 27.6 27.6 27.7 29.4 30 31.6 32.1 32.3 33.3 34.7	
27.3 27.6 27.6 27.7 29.4 30 31.6 32.1 32.3 33.8 34.7 35.3	
27.3 27.6 27.7 29.4 30 31.6 32.1 32.3 33.8 34.7 35.3 36.2	
27.3 27.6 27.7 29.4 30 31.6 32.1 32.3 33.8 34.7 35.3 36.2	
27.3 27.6 27.7 29.4 30 31.6 32.1 32.3 33.8 34.7 35.3 36.2	
27.3 27.6 27.7 29.4 30 31.6 32.1 32.3 33.8 34.7 35.3 36.2	

38.8

8.23

MTCAStat Background Calculations VANADIUM DATA

39 39.4 40.2 42.3 43.1 48.5 49.4 57 59.8 60.2 66.2 80.5

XII. DATA QUALITY INFORMATION

Data Quality Assurance and Quality Control (QA/QC)

Information on the overall quality of the data used in this report is presented in this section. The background soil data presented in this report is based on analytical work performed by the Department of Ecology's Manchester Environmental Laboratory. Four primary methods or procedures are employed by Manchester to evaluate and control the accuracy of laboratory analyses: check standards, duplicates, spikes, and blanks. The check standard is routinely performed in the laboratory using lab control samples and spiked blanks. The most important of the quality control measures is the check standard, followed by duplicate samples.

Sample Splits, Duplicates, and Reference Samples

Sample splits, duplicates, and reference samples were periodically collected in each phase of this study. The sample preparation method outlined in ASTM D 3987-85 was used to prepare all sample splits and duplicates. In addition to sample splits and duplicates, reference samples were also collected. Reference samples were collected from a separate geographic location and included in another data set for analysis. For example, the two reference samples in the Puget Sound data base were actually collected in Walla Walla. These samples were labeled as coming from the Puget Sound data set for QA/QC purposes. Additional information on sample splits and duplicates is given in Table 18.

Table 18: Sample Splits, Duplicates, and Reference Samples

Study	Date	Sampling Locations	Splits	Duplicates	Reference Samples	Total No. Samples
Soos Creek	1987	18	0	4		41
Other Regions ¹	1990	35	0	0		35
Clark County ²	1991	26	5	0	2	86
Yakima³	1991	32	7	0	2	117
Spokane ⁴	1992	27	9	0		84
Puget Sound ⁵	1993	28	6	4	2	127
	Total =	166	27	8	6	490

¹Regions "A", "C", "D", "J", "L", "P", "R"

²Includes Region "G"

³Includes Region "M", "O"

⁴Includes Region "U"

⁵Includes Region "F"

Laboratory Precision and Accuracy

In order to assess the quality of the data, relative percent difference calculations on the relative percent difference (RPD) for each sample split, duplicate, or "reference" sample is presented in this section. The RPD for each sample was calculating using the following formula:

Relative Percent Difference (RPD) =
$$((A-B)/(A+B))/2 \times 100 = (\%)$$

For example, sample "A" has a value of 16 mg/kg. Sample "B," which is a duplicate, has a value of 13.9 mg/kg. The RPD in this case is:

RPD =
$$((16-13.9)/(16+13.9))/2 \times 100 = 3.5\%$$

RPD values were not calculated if a laboratory detection limit value was reported for one or both samples.

Data Quality Results

RPD calculations for each sample split, duplicate, or reference sample is given in **Table 18**. The overall quality of the data was excellent—the average relative percent difference for all sample splits, duplicates, or reference samples was 4%. The median relative percent difference value for each of the 12 elements was less than 6%. The RPD values were highest for the two elements cadmium and mercury. This variance can probably be attributed to the presence of both elements at concentrations that are at or near laboratory detection limits.

Analytical Effects - Arsenic

During the compilation of data for this study, it was noted that at lower levels (i.e., less than 50 mg/kg), the arsenic values produced by inductively coupled plasma atomic emission spectroscopy (ICP) were significantly higher than those produced by atomic absorption (AA). The effect of AA vs. ICP upon the Puget Sound Basin, Spokane, Clark County, and Yakima Basin data sets is graphically illustrated in Figures 49-52. ICP analysis can produce higher values for arsenic because of iron (iron acts as an interferant and is difficult to correct for when analyzing for arsenic using ICP methods). In contrast to ICP, AA analysis has a much lower detection limit (when analyzing for arsenic in soil, the Ecology Manchester Laboratory uses a detection limit of 0.15 mg/kg for GFAA and 3 mg/kg for ICP analysis) and is thus much more accurate than ICP at lower levels. Thus, it is important to be aware of this issue when analyzing for arsenic.

Quality Assurance Memos

Information on sample receipt, instrument calibrations, procedural blanks, spiked samples, and serial dilutions were summarized in "quality assurance" memos prepared by Manchester laboratory. An example quality assurance memo is included on p. 12-12.

	Al	As-AA	As - ICF	Be-	Cd	Cr	Cu	Fe	Pb	Mn	Hg	NI	Zn
MAX	11.9%	50.0%	28.3%	12.3%	30.9%	9.1%	21.0%	15.2%	18.9%	16.0%	38.9%	13.1%	6.0%
MEAN	2.7%	5.6%	6.9%	2.4%	7.5%	2.1%	3.1%	1.9%	5.3%	3.3%	8.2%	2.7%	1.4%
MEDIAN	1.9%	2.1%	6.0%	1.6%	5.9%	1.6%	1.2%	1.3%	3.3%	2.4%	5.0%	2.0%	0.9%
MIN	0.0%	0.0%	0.0%	0.0%	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(n) =	38	31	33	37	24	38	38	38	33	38	36	38	38

TABLE 20: RELATIVE PERCENT DIFFERENCES, SAMPLE SPLITS, DUPLICATES, AND REFERENCE SAMPLES

SITE	SAMPLE NO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		A As - ICI	***********	Cd	*********	Cu		Pb		Hg	Ni	Zn MEAN	RPD
L112.2	91238180	32,400	3.31	22.0	1	1	26	15	33,500	8	562	0	17	64	
CL312.2.3SS	91258446 RPD =	30,400 2 %			1 1%	1 7%	23	14 2%	34,100 0%	4 6 6	827 6 10%	0 *****	15 2 %	57 3% 5%	
	RFU=	£70			1 70	1 7/9	4.70	4 /1	U /6		1 I U /0	4 70	£ 70	376 370	
CL140.3	91238185	25,600	3.89	22.0	2	1	19	23	34,300	54	536	0	12	80	
CL280.3SS	91238209	25,400	4.95	48.9	2	1	21	56	39,200	25	529	0	13	78	
	RPD =	0%	6%	19%	1%	13%	2%	21%	. 3%	19%	6 0%	39%	2%	0% 10%	
CL150.3	91238187	53,500	2.64	38.3	2	1	29	22	48,800	10	434	0	21	74	
CL282.2SS	91238210	42,500	3.35	59.3	2	1	26	22	46,200			0	14	64	
	RPD=	6%	6%	11%	2%	2%	3%	0%	1%	6%	1%	7%	9%	4% 4%	
CL182.2	91258505	45,100	3.14	37.1	2	1	31	18	37,500	11	1370	0	19	89	
CL292.2SS	91258510	44,700	2.90	31.9	1	1		18	37,600	7	1310		20	87	
	RPD =	0%	2%	4%	0%	3%		0%			1%		1%		
CL240.3		38,800			2	1	17	20	52,900	10	986	0	19	99	
CL300.3SS	91258447	37,700			2	1	18	20	52,100		1100		17	99	
	RPD =	1%			4%	9%		1%		2%			3%		
CL270.3RS	91258520	19,200	2.80	18.0	1	1	25	10	16,500	5	258	0	26	29	
CL272.2RS	91258521	19,500		15.0	1	0		10	16,500		247	0	28	30	
	RPD=	0%	1%	5%	2%	7%	0%	1%	0%	7%	1%	1%	2%	1% 2%	
PSL3A0.5	87278105	22,800		18	1	<.8	19	18	15,300	<4	373	0	21	40	
PSL5AO.5DUP	91258522	21,800		19	. 1	<.8	19	27	17,000	<4	412	0	21	42	
	RPD#	1%		1%	0%		0%	10%	3%		2%	1%	0%	1% 2%	
PSL6A0.5	87278111	15,700		<11	1	<.8	26	13	14,200	<4	231	0	25	31	
PSB8AO.5DUP	87278147	14,500		<11	<.5	8	18	10	13,500		215	0	22	28	
	RPD =	2%					9%	7%	1%		2%	7%	3%	3% 4%	
PSB2A0.5	87278113	21,900		12	1	<.8	24	13	17,000	<4	494	0	23	39	
PSB6AO.5DUP	87278145	23,000		<11	1	<.8		12	17,000	<4		0	23	39	
	RPD =	1%			3%			2%	0%		16%		0%	0% 3%	
PSB4A2.0	87278142	28,300		15	1	<.8	24	8	11,300	<4	137	0 _	- 19	27	
PSB7A2.0DUP	87278146	25,000		<11	1	<.8	20		10,300		122		16	26	
	RPD#	3%			5%			0%	2%		3%		4%		

TABLE 20: RELATIVE PERCENT DIFFERENCES, SAMPLE SPLITS, DUPLICATES, AND REFERENCE SAMPLES

SITE	SAMPLE NO.	Al	As - A	A As - ICP	Be	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn	MEAN RPD	(%
PS10.3	93088519	24,000	7	27	1	1	34	32	28,700	16	1210	0	30	60		
PS300.3DUP	93088637	21,000		20	1	<0.2		29	27,400	13	1090		25	55		
	RPD =	3%	4%	7%	2%			3%	1%	5%	3%		4%		3%	
PS12.2	93088520	21,700	6	20	0	1	36	30	27,300	6	819	0	30	44		
PS302.2DUP	93088638	16,700	6	19	0	<0.2	33	25	25,500	6	972	0	23	41		
	RPD =	7%	1%	1%	1%		2%	4%	2%	1%	4%	3%	7%	2%	3%	
PS20.3	93088522	14,600	3	15	0	0	20	16	17,700	7	654	0	21	65		
PS270.3DUP	93088631	13,400	2	12	0	<0.2	18	15	15,800	6	637	0	18	65		
RPD =	RPD =	2%	5%	6%	1%		2%	1%	3%	1%	1%	7%	5%	0%	3%	
PS22.2	93088523	17,300	6	23	0	1	31	16	28,200	5	459	0	23	45		
PS272.2DUP	93088632			17	Ö	<0.2	100	10	20,400		342	Ō	13	35		
	RPD =	10%	11%	8%	12%			10%		6%	7%	6%		6%	9%	
PS40.3V	93088527	20,600	9	28	0	1	48	40	36,600	18	663	0	54	109	•	
PS320.3SS	93088641	19,700	10	31	0	0	45	39	33,400	16	586	0	48	100		
	RPD =	1%	3%	2%	1%	31%	1%	0%	2%	3%	3%	2%	3%	2%	4%	
PS70.3C	93088552	10,400	4	10	0	0	19	16	16,400	8	315	0	18	43		
PS310.3SS	93088639	10,300	5	13	0	<0.2	20	18	15,900	10	316	0	17	45		
	RPD =	0%	1%	7%	3%		2%	2%	1%	5%	0%	7%	1%	1%	2%	
PS122.2	93088578	18,800	2	8	0	<0.2	24	11	16,200	5	172	0	27	27		
PS292.2SS	93088636	14,500	2	10	0	<0.2			13,000		138	0	26	23		
	RPD=	6%	2%	6%	1%		1%	4%	5%	14%	5%	10%	1%	4%	5%	
PS154.3V	93088588	17,300	3	4	0	<0.2	16	19	18,000	4	227	0	19	36		
PS312.2SS	93088640	18,400	2	13	0	<0.2	18	18	18,200		249	0	21	35		
	RPD =	2%	2%	28%	7%		3%	1%	0%	7%	2%	13%	2%	1%	6%	
PS282.2SS	93088634	23,400	4	20	0	<0.2	23	14	27,800	7	287	0	15	54		
PS1855	93088603	14,400		14	0	<0.2			25,200		217	0	15	50		
	RPD =	12%	20%	9%	10%			12%		1%	7%	10%	1%	2%	7%	
PS200.3A	93088612	12,900	14	26	0	0	24	16	12,300	46	621	0	27	49		
PS290.3SS	93088635	13,300		19	0	0		15	11,400		519		27	48		

TABLE 20: RELATIVE PERCENT DIFFERENCES, SAMPLE SPLITS, DUPLICATES, AND REFERENCE SAMPLES

STE TE	SAMPLE NO. AI RPD = 1%	2. AI 1%	As - A 18%	As - AA As - ICP Be 18% 8% 0%	P Be 0%	2 % 2 C	- 1% - 1% - 1%	1% 1% 2	Fe 2%	3 %	Mn 4%	5% 2%	Ni 0%	Z2 .		MEAN RPD (%) 4%	(%)
PS260.3RS	93088629	9,330	4	12	0	<0.2		17 2	21,900	ဖ	420	0	* F	48			
PS262.2RS	93088630	8,610	က	14	0	<0.2	9		21,400	-7.	402	0	9	48			
	RPD =	2%	3%	4%	*		9% 1	*	8	% 0	3	28	4.50	%o .	5 %		
SB10.3	92268500	9.070	3.59	8.7	0		, ,	. 4	15.700	€	364		7	47			
SB330.3SS	92268574	9,570	3.15	12.0	0	0	7		16,500		353	0	. ∞	20			
	RPD =	4%	3%	11%	4%	4%			38	4%	7%	%0	1%	%1 .	2%		
SB12.2	92268501	7,940	5.22	8.7		0		<u>5</u>	19.400	ſ	369	•	•	42			
SB320.3SS	92268573	9,155	4.15	12.0	0	_			22,000		378	0	, 2	46			
	#DD#	4%	6%	% 60	2%	40%	7%	2 %0	3%	-	1%	%88	8	5%	%9		
SB20.3	92268502	15,800	3.92	10.0	-	0	7	15 1	14,600	15	443	0	∞	22			
SB340.3SS	92268575	17,100		15.0	-	0	∞ 		15,400		435	0	ക	26			
	RPD =	2%	1%	7,01	2%	%9	1%	.	88	80	%0	2%	**	%0	2%		
SB32.2	92268505	14,500	9.87	17.0	_	· · · · · · · · · · · · · · · · · · ·	-	14	22.900	<u>.</u>	526	0	10	54			
SB270.3 SS	92268568	17,600		24.0		-			24,500	- 7.	520	<0.005		29			
	RPD ==	2.%	%0	%6	2%	3%	3%	8	2%	5%	%0		25	2%	2%		
SB60.3	92268511	12,200	3.21	9.7	# -	. 0	11 7		13,200	9	730		·	29			
SB290.3SS	92268570	14,500		15.0	•	0	11 8		14,300	9	1170	0	12	99			
	RPD =	4%	1%	11%	%8	18%	# ·	~	8	4%	12%	%	28	8	2%		
SB80.3	92268517	15,500	5.82	17.0	-	_	1	12	13,400	17	488		တ	26			
SB310.3SS	92268572	16,000	5.90	14.0	•	•	=		13,400	2	452	0	9				
	RPD #	1%	960	2%	3%	4%	0 %	9	3 *	\$	2%	4%	38	%0	2%		
SB111.3	92268525	18,800	7.95	20.0	-		13 1	19 3	37.800	12	1111	0	<u> </u>	09	ξ,		
SB350.3SS	92268576	15,900	8.27	19.0	•	-	13 3	36 2	20,200	15	456	0	<u>1</u>	29			
	RPD =	4 %	%	1 %	1%	3%	0% 1	15% 1	15%	%9	13%	24%	1%	%0	%2		
SB130.3	92268529	24,200	3.46	19.0	-	-	19 1	17 2	2,300	9	250	0	16	52			
SB300.3SS	92268571	23,900	2.30	13.0	-	0	180	7	21,800		929	0	15	52			
	RPD #	%0	10%	%6	%0	10%	1% 1	* %	%	2%	4%	1%	13%	%0 %0	3%		
SB142.2V	92268536	13,800	2.30	14.0	-	0	11 1	17 1	13,100	∞	381	0	10	38			

TABLE 20: RELATIVE PERCENT DIFFERENCES, SAMPLE SPLITS, DUPLICATES, AND REFERENCE SAMPLES

SB280.3SS	92268569				Be	Cd		Cu		Pb	Mn	Hg	Ni	***********	MEAN RPD
		14,800	2.40	11.0	1	0	11	17	14,200	11	397	<0.005		44	
	RPD #	2%	1%	6%	2%	8%	1%	0%	2%	7%	1%		2%	4%	3%
/B50.3V	91258574	14,200	4.6	26	1	0	13	18	25,400	11	465	0	13	55	
/B340.3SS	91258582	13,700	4.4	29	1	1	13	18	25,100	11	470	0	15	56	
	RPD =	1%	1%	3%	0%	13%	1%	1%	0%	0%	0%	1%	4%	0%	2%
/B60.3	91258562	23,000	5.4	33	1	0	29	23	35,600	8	875	0	37	73	
YB332.2SS	91258569	26,000	5.4	33	1	1	32	24	37,400	7	876	0	38	79	
	RPD =	3%	0%	0%	1%	4%	2%	1%	1%	3%	0%	1%	1%	2%	1%
/B90.3C	91258578	23,700	1.7	33	1	1	13	17	34,900	<2	1350	0	13	51	
YB342.2SS	91258583	23,500	1.8	30	1	1	11	18	34,900	2	1160	0	12	50	
		0%	1%	2%	0%	14%	3%	1%	0%		4%	8%	3%	0%	3%
/B110.3	91258544	21,000	1.5	20	1	0	11	17	20,900	5	501	0	9	44	
/B360.3SS	91258412	24,200		20	1	0	12	20	22,000			0	11	39	
	RPD =	4%		0%	5%	1%	0%	3%	1%	11%	6%	29%	5%	3%	6%
/B130.3	91258404	28,100		23	1	1	27	16	27,100	5	1250	0	35	113	
YB350.3SS	91258408	26,100	2.9		1	1		17	27,200		1540	0	35	115	
	RPD =	2%	50%	13%	2%	3%	0%	1%	0%	11%	5%	39%	0%	0%	10%
YB140.6V	91258546	18,400	1.5	34	1	1	15	17	38,000	5	1600	0	15	62	
YB330.3SS	91258551	18,400	1.3	30	1	1	15		35,900		2000		16	61	
	RPD =	0%	4%	3%	1%	7%	1%	1%	1%	3%	6%	4%		0%	3%
/B160.3	91258406	24,200	3.12	35	1	1	29	19	20,400	5	539	0	23	45	
YB352.2SS	91258409	19,800	2.1	21	1	<0.2	28	16	20,000	8	554	0	22	44	
	RPD =	5%	10%	13%	3%		1%	3%	0%	13%	1%	3%	1%	0%	4%
/B370.3RS	91258444	18,100	3	17	1	0	25	9	16,000	4	265	0	26	30	
/B372.2RS	91258445	19,500		17	1	0	27	10	16,900			0	27	31	
	RPD =	2%	0%	0%	1%	1%		1%	1%	0%	1%	2%		1%	1%

<u>с</u> **∀** FIGURE 49: PUGET SOUND BASIN AA vs. ICP ARSENIC SAMPLES SAMPLE NO. œ (MG/KG)

12-8

O As - ICP AS-AA FIGURE 50: SPOKANE BASIN AA vs. ICP ARSENIC SAMPLES 0-0-SAMPLE NO. 0-(WG/KG)

O As - ICP A As - AA FIGURE 51: CLARK COUNTY AA vS ICP ARSENIC SAMPLES SAMPLE NO. 0-0-0-0-0-0-(MG/KG)

FIGURE 52: YAKIMA BASIN AA vs. ICP ARSENIC SAMPLES

EXAMPLE QUALITY ASSURANCE MEMO - MANCHESTER LABORATORY

November 1992

TO:

Pete Kmet

FROM:

Bill Kammin, Environmental Lab Director

SUBJECT: Metals Quality Assurance memo for the 1992 Metals in Soils Project

SAMPLE RECEIPT

The samples from the 1992 Metals in Soils project were received by the Manchester Laboratory on 6/18/92 in good condition.

INSTRUMENT CALIBRATION

Instrument calibration was performed before each analytical run and checked by initial calibration verification standards and blanks. Continuing calibration standards and blanks were analyzed at a frequency of 10% during the run and again at the end of the analytical run. All initial and continuing calibration verification standards were within the relevant USEPA Contract Laboratory Program (CLP) control limits. AA calibration gave a correlation coefficient (r) of 0.995 or greater. also meeting CLP calibration requirements.

PROCEDURAL BLANKS

Results flagged with B denote procedural blank contamination. Procedural blank problems were generally at ultra-trace levels. Blank contamination at these levels is commonly found in total recoverable digestions.

SPIKED SAMPLE ANALYSIS

Spike and duplicate spike sample analyses were performed on this data set. Results qualified with N denote spike recoveries outside the CLP acceptance limits of +/- 25%.

SERIAL DILUTION ANALYSES

Serial dilution is used in ICP analyses to examine sample results for potential interferences. Results not meeting CLP serial dilution specifications are qualified with E, denoting sample based interferences. The E qualifier is also used to denote results estimated for other sample based reasons.

SUMMARY AND DISCUSSION

Generally, the quality of the data provided is acceptable. Two representative data packages (one atomic absorption -- one ICP) were examined in exhaustive detail, to help assure project data quality. The detailed analysis of the entire data set for the total recoverable arsenic data showed 96% of all analytical quality control was in control, and 100% of calibration related (critical) QC was in control.

For the ICP data package examined in exhaustive detail (8/6/92 run), calibration blank related critical QC was in control for 132 of 135 (98%) Continuing Calibration Blank (CCB) results. The three results above the Instrument Detection Limit (IDL), are all below 4 ug/L, and are the result of carryover from a standard into the CCB. This carryover has no analytical significance, and results are not qualified as a result of this occurrence.

For ICP Continuing Calibration Verification (CCV) results, 100% of the critical QC data was in control (166/166 results). In addition, for the ICSAB interference check standard, 100% (52/52) of the QC results were in control.

Although the other data sets in this data package were not examined in this exhaustive detail, normal QC review procedures indicate data of similar quality.

The data generated by the analysis of these samples can be used noting the data qualifications discussed in this memo.

Provided as an attachment to this memo is a compilation of qualifier definitions.

Please call Bill Kammin at SCAN 744-4737 to further discuss this project.

lan languni sangun disenten ngga samalik ng tali sambaratan lasa atah ng silipa ay italika dia pad Batin sababaratan ng sambaratan pangunatan sambaratan ng pangunian dia sambaratan sa sambaratan sa ng batin sa

XIII. REFERENCES

- Alt, David D., and Hyndman, D.W. (1984). Roadside Geology of Washington. Mountain Press Publishing Company. Missoula, Montana, 282 p.
- Ames, Kenneth C. (1993). Background Concentrations of Metals in Soils from Selected Regions in the State of Washington (draft report, subject to revisions). U.S. Geological Survey Water Resources Investigation Report.
- Blakley, Nigel (1992). Statistical Guidance for Ecology Site Managers. Washington State Department of Ecology Publication 92-54.
- Blakley, Nigel (1993). MTCAStat Statistical Software. Published by the Washington State Department of Ecology, Toxics Cleanup Program.
- Bushnell, T.M. (1944). The Story of Indiana Soils, Purdue University Agricultural Experimental Station, Special Circulation 1, Lafayette, 52 p.
- Flint, R.F. (1971). Glacial and Quaternary Geology. John Wiley and Sons.
- Hunter, Fields, et.al. (1993). A Summary of Selected Soil Constituents and Contaminants at Background Locations in New Jersey. New Jersey Department of Environmental Protection.
- Jenny, Hans (1941). Factors of Soils Formation, McGraw-Hill Book Co., New York.
- Keller, W.D. (1957). The Principles of Chemical Weathering, Lucas Bros., Columbia, Missouri, 111 p.
- Lenfesty, C.D., and Reedy, T.E. (1985), Soil Survey of Yakima County area, Washington: U.S. Department of Agriculture Soil Conservation Service, Washington, D.C., 345 p.
- Ontario, Canada (1993). Ontario Typical Range of Chemical Parameters in Soil, Vegetation, Moss Bags, and Snow, Version 1.0a. Ontario Ministry of Environment and Energy.
- Poulson, E.N. (1953). Soil Survey of Whatcom County Area, Washington: U.S. Department of Agriculture Soil Conservation Service, Washington D.C., 153 p.
- Pringle, R.F. (1986). Soil Survey of Grays Harbor County area, Pacific County, and Wahkiakum County, Washington, U.S. Department of Agriculture Soil Conservation Service, Washington, D.C., 296 p.
- PTI Environmental Services (1989). Background Concentrations of Selected Chemicals in Water, Soil, Sediments, and Air of Washington State. Draft Report. Prepared for Washington Department of Ecology. Bellevue, WA.

- Reiche, P. (1950). A Survey of Weathering Processes and Products, Univ. of New Mexico, Univ. Albuquerque, Publs in Geology, 3, 95 p.
- Schaklette, H.T., and Boernegen, J.G. (1984). Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270.
- Slayton, D., and Montgomery, D. (1991). Michigan Background Soil Survey. Michigan Department of Natural Resources.
- Thornbury, William D. (1969). Principles of Geomorphology (Second Edition).
- Thornes, J.T. (1979) Process in Geomorphology. John Wiley and Sons, New York. Halsted Press.
- United States Department of Energy (1993). Hanford Site Background: Part 1, Soil Background for Nonradioactive Analytes, DOE/RL 92-24. U.S. Department of Energy, Richland Operations Office, Richland Washington.